未验证 提交 e5a1d82b 编写于 作者: B Bin Lu 提交者: GitHub

Update detection_en.md

上级 69cbd5b9
......@@ -99,6 +99,18 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml -o \
# Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
# mulit-Node, multi-GPU training
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --ips="10.21.226.181,10.21.226.133" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. The command for viewing the IP address of the machine is `ifconfig`.
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html). for single card training, the command is as follows:
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
```
### 2.2 Load Trained Model and Continue Training
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册