diff --git a/doc/doc_en/detection_en.md b/doc/doc_en/detection_en.md index df96fd5336cd64049e8f5d9b898f60c55b82b7b4..efea13e36b55b4066bd3fb68f6a7901741e4ab83 100644 --- a/doc/doc_en/detection_en.md +++ b/doc/doc_en/detection_en.md @@ -98,7 +98,19 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml -o \ # multi-GPU training # Set the GPU ID used by the '--gpus' parameter. python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained - + +# mulit-Node, multi-GPU training +# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter. +python3 -m paddle.distributed.launch --ips="10.21.226.181,10.21.226.133" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \ + -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained +``` +**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. The command for viewing the IP address of the machine is `ifconfig`. + +If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html). for single card training, the command is as follows: +``` +python3 tools/train.py -c configs/det/det_mv3_db.yml \ + -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \ + Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True ``` ### 2.2 Load Trained Model and Continue Training