未验证 提交 e10e7888 编写于 作者: D Daniel Yang 提交者: GitHub

Merge pull request #790 from tink2123/fix_typo_and_polish_infer

fix typo and add srn for inference
...@@ -23,8 +23,9 @@ inference 模型(`fluid.io.save_inference_model`保存的模型) ...@@ -23,8 +23,9 @@ inference 模型(`fluid.io.save_inference_model`保存的模型)
- [1. 超轻量中文识别模型推理](#超轻量中文识别模型推理) - [1. 超轻量中文识别模型推理](#超轻量中文识别模型推理)
- [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理) - [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理)
- [3. 基于Attention损失的识别模型推理](#基于Attention损失的识别模型推理) - [3. 基于Attention损失的识别模型推理](#基于Attention损失的识别模型推理)
- [4. 自定义文本识别字典的推理](#自定义文本识别字典的推理) - [4. 基于SRN损失的识别模型推理](#基于SRN损失的识别模型推理)
- [5. 多语言模型的推理](#多语言模型的推理) - [5. 自定义文本识别字典的推理](#自定义文本识别字典的推理)
- [6. 多语言模型的推理](#多语言模型的推理)
- [四、方向分类模型推理](#方向识别模型推理) - [四、方向分类模型推理](#方向识别模型推理)
- [1. 方向分类模型推理](#方向分类模型推理) - [1. 方向分类模型推理](#方向分类模型推理)
...@@ -297,9 +298,21 @@ Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555] ...@@ -297,9 +298,21 @@ Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str) dict_character = list(self.character_str)
``` ```
<a name="基于SRN损失的识别模型推理"></a>
### 4. 基于SRN损失的识别模型推理
基于SRN损失的识别模型,需要额外设置识别算法参数 --rec_algorithm="SRN"。 同时需要保证预测shape与训练时一致,如: --rec_image_shape="1, 64, 256"
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
--rec_model_dir="./inference/srn/" \
--rec_image_shape="1, 64, 256" \
--rec_char_type="en" \
--rec_algorithm="SRN"
```
<a name="自定义文本识别字典的推理"></a> <a name="自定义文本识别字典的推理"></a>
### 4. 自定义文本识别字典的推理 ### 5. 自定义文本识别字典的推理
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径 如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
``` ```
...@@ -307,7 +320,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png ...@@ -307,7 +320,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
``` ```
<a name="多语言模型的推理"></a> <a name="多语言模型的推理"></a>
### 5. 多语言模型的推理 ### 6. 多语言模型的推理
如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果, 如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/` 路径下有默认提供的小语种字体,例如韩文识别: 需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/` 路径下有默认提供的小语种字体,例如韩文识别:
......
## 文字识别 ## 文字识别
- [一、数据准备](#数据准备)
- [数据下载](#数据下载)
- [自定义数据集](#自定义数据集)
- [字典](#字典)
- [支持空格](#支持空格)
- [二、启动训练](#文本检测模型推理)
- [1. 数据增强](#数据增强)
- [2. 训练](#训练)
- [3. 小语种](#小语种)
- [三、评估](#评估)
- [四、预测](#预测)
- [1. 训练引擎预测](#训练引擎预测)
<a name="数据准备"></a>
### 数据准备 ### 数据准备
...@@ -13,13 +32,14 @@ PaddleOCR 支持两种数据格式: `lmdb` 用于训练公开数据,调试算 ...@@ -13,13 +32,14 @@ PaddleOCR 支持两种数据格式: `lmdb` 用于训练公开数据,调试算
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
``` ```
<a name="数据下载"></a>
* 数据下载 * 数据下载
若您本地没有数据集,可以在官网下载 [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),下载 benchmark 所需的lmdb格式数据集。 若您本地没有数据集,可以在官网下载 [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),下载 benchmark 所需的lmdb格式数据集。
如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。 如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。
<a name="自定义数据集"></a>
* 使用自己数据集 * 使用自己数据集
若您希望使用自己的数据进行训练,请参考下文组织您的数据。 若您希望使用自己的数据进行训练,请参考下文组织您的数据。
...@@ -78,7 +98,7 @@ python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_ ...@@ -78,7 +98,7 @@ python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_
|- word_003.jpg |- word_003.jpg
| ... | ...
``` ```
<a name="字典"></a>
- 字典 - 字典
最后需要提供一个字典({word_dict_name}.txt),使模型在训练时,可以将所有出现的字符映射为字典的索引。 最后需要提供一个字典({word_dict_name}.txt),使模型在训练时,可以将所有出现的字符映射为字典的索引。
...@@ -119,13 +139,14 @@ word_dict.txt 每行有一个单字,将字符与数字索引映射在一起, ...@@ -119,13 +139,14 @@ word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,
如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。 如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
并将 `character_type` 设置为 `ch` 并将 `character_type` 设置为 `ch`
<a name="支持空格"></a>
- 添加空格类别 - 添加空格类别
如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `true` 如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `true`
**注意:`use_space_char` 仅在 `character_type=ch` 时生效** **注意:`use_space_char` 仅在 `character_type=ch` 时生效**
<a name="启动训练"></a>
### 启动训练 ### 启动训练
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN 识别模型为例: PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN 识别模型为例:
...@@ -151,7 +172,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 ...@@ -151,7 +172,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log # 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
``` ```
<a name="数据增强"></a>
- 数据增强 - 数据增强
PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入扰动,请在配置文件中设置 `distort: true` PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入扰动,请在配置文件中设置 `distort: true`
...@@ -162,6 +183,7 @@ PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入 ...@@ -162,6 +183,7 @@ PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入
*由于OpenCV的兼容性问题,扰动操作暂时只支持Linux* *由于OpenCV的兼容性问题,扰动操作暂时只支持Linux*
<a name="训练"></a>
- 训练 - 训练
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/rec_CRNN/best_accuracy` PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/rec_CRNN/best_accuracy`
...@@ -224,17 +246,19 @@ Optimizer: ...@@ -224,17 +246,19 @@ Optimizer:
``` ```
**注意,预测/评估时的配置文件请务必与训练一致。** **注意,预测/评估时的配置文件请务必与训练一致。**
<a name="小语种"></a>
- 小语种 - 小语种
PaddleOCR也提供了多语言的, `configs/rec/multi_languages` 路径下的提供了多语言的配置文件,目前PaddleOCR支持的多语言算法有: PaddleOCR也提供了多语言的, `configs/rec/multi_languages` 路径下的提供了多语言的配置文件,目前PaddleOCR支持的多语言算法有:
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language | | 配置文件 | 算法名称 | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语 | | rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语 |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 | | rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 | | rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 | | rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 | | rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 |
多语言模型训练方式与中文模型一致,训练数据集均为100w的合成数据,少量的字体可以在 [百度网盘](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) 上下载,提取码:frgi。 多语言模型训练方式与中文模型一致,训练数据集均为100w的合成数据,少量的字体可以在 [百度网盘](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) 上下载,提取码:frgi。
...@@ -269,7 +293,7 @@ TrainReader: ...@@ -269,7 +293,7 @@ TrainReader:
... ...
``` ```
<a name="评估"></a>
### 评估 ### 评估
评估数据集可以通过 `configs/rec/rec_icdar15_reader.yml` 修改EvalReader中的 `label_file_path` 设置。 评估数据集可以通过 `configs/rec/rec_icdar15_reader.yml` 修改EvalReader中的 `label_file_path` 设置。
...@@ -281,8 +305,10 @@ export CUDA_VISIBLE_DEVICES=0 ...@@ -281,8 +305,10 @@ export CUDA_VISIBLE_DEVICES=0
python3 tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy python3 tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
``` ```
<a name="预测"></a>
### 预测 ### 预测
<a name="训练引擎预测"></a>
* 训练引擎的预测 * 训练引擎的预测
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。 使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
......
...@@ -26,8 +26,10 @@ Next, we first introduce how to convert a trained model into an inference model, ...@@ -26,8 +26,10 @@ Next, we first introduce how to convert a trained model into an inference model,
- [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION) - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
- [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION) - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
- [3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE](#ATTENTION-BASED_RECOGNITION) - [3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE](#ATTENTION-BASED_RECOGNITION)
- [4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS) - [4. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION)
- [5. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
- [6. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE) - [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
- [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE) - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
...@@ -299,17 +301,31 @@ self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" ...@@ -299,17 +301,31 @@ self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str) dict_character = list(self.character_str)
``` ```
<a name="SRN-BASED_RECOGNITION"></a>
### 4. SRN-BASED TEXT RECOGNITION MODEL INFERENCE
The recognition model based on SRN requires additional setting of the recognition algorithm parameter --rec_algorithm="SRN".
At the same time, it is necessary to ensure that the predicted shape is consistent with the training, such as: --rec_image_shape="1, 64, 256"
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
--rec_model_dir="./inference/srn/" \
--rec_image_shape="1, 64, 256" \
--rec_char_type="en" \
--rec_algorithm="SRN"
```
<a name="USING_CUSTOM_CHARACTERS"></a> <a name="USING_CUSTOM_CHARACTERS"></a>
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY ### 5. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict. If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict.
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
``` ```
<a name="Multilingual model inference"></a> <a name="MULTILINGUAL_MODEL_INFERENCE"></a>
### 6. MULTILINGAUL MODEL INFERENCE
### 5. Multilingual Model Reasoning
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results, If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition: You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition:
......
## TEXT RECOGNITION ## TEXT RECOGNITION
- [DATA PREPARATION](#DATA_PREPARATION)
- [Dataset Download](#Dataset_download)
- [Costom Dataset](#Costom_Dataset)
- [Dictionary](#Dictionary)
- [Add Space Category](#Add_space_category)
- [TRAINING](#TRAINING)
- [Data Augmentation](#Data_Augmentation)
- [Training](#Training)
- [Multi-language](#Multi_language)
- [EVALUATION](#EVALUATION)
- [PREDICTION](#PREDICTION)
- [Training engine prediction](#Training_engine_prediction)
<a name="DATA_PREPARATION"></a>
### DATA PREPARATION ### DATA PREPARATION
...@@ -13,13 +30,14 @@ The default storage path for training data is `PaddleOCR/train_data`, if you alr ...@@ -13,13 +30,14 @@ The default storage path for training data is `PaddleOCR/train_data`, if you alr
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
``` ```
<a name="Dataset_download"></a>
* Dataset download * Dataset download
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),download the lmdb format dataset required for benchmark If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),download the lmdb format dataset required for benchmark
If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path. If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path.
<a name="Costom_Dataset"></a>
* Use your own dataset: * Use your own dataset:
If you want to use your own data for training, please refer to the following to organize your data. If you want to use your own data for training, please refer to the following to organize your data.
...@@ -72,7 +90,7 @@ Similar to the training set, the test set also needs to be provided a folder con ...@@ -72,7 +90,7 @@ Similar to the training set, the test set also needs to be provided a folder con
|- word_003.jpg |- word_003.jpg
| ... | ...
``` ```
<a name="Dictionary"></a>
- Dictionary - Dictionary
Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index. Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.
...@@ -114,12 +132,14 @@ To customize the dict file, please modify the `character_dict_path` field in `co ...@@ -114,12 +132,14 @@ To customize the dict file, please modify the `character_dict_path` field in `co
If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch. If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.
<a name="Add_space_category"></a>
- Add space category - Add space category
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`. If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`.
**Note: use_space_char only takes effect when character_type=ch** **Note: use_space_char only takes effect when character_type=ch**
<a name="TRAINING"></a>
### TRAINING ### TRAINING
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example: PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:
...@@ -143,7 +163,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 ...@@ -143,7 +163,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
# Training icdar15 English data and saving the log as train_rec.log # Training icdar15 English data and saving the log as train_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
``` ```
<a name="Data_Augmentation"></a>
- Data Augmentation - Data Augmentation
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file. PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.
...@@ -152,7 +172,7 @@ The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, rand ...@@ -152,7 +172,7 @@ The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, rand
Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py) Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
<a name="Training"></a>
- Training - Training
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process. PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.
...@@ -215,7 +235,8 @@ Optimizer: ...@@ -215,7 +235,8 @@ Optimizer:
``` ```
**Note that the configuration file for prediction/evaluation must be consistent with the training.** **Note that the configuration file for prediction/evaluation must be consistent with the training.**
-Minor language <a name="Multi_language"></a>
- Multi-language
PaddleOCR also provides multi-language. The configuration file in `configs/rec/multi_languages` provides multi-language configuration files. Currently, the multi-language algorithms supported by PaddleOCR are: PaddleOCR also provides multi-language. The configuration file in `configs/rec/multi_languages` provides multi-language configuration files. Currently, the multi-language algorithms supported by PaddleOCR are:
...@@ -250,7 +271,7 @@ Global: ...@@ -250,7 +271,7 @@ Global:
... ...
``` ```
<a name="EVALUATION"></a>
### EVALUATION ### EVALUATION
The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader. The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.
...@@ -261,8 +282,10 @@ export CUDA_VISIBLE_DEVICES=0 ...@@ -261,8 +282,10 @@ export CUDA_VISIBLE_DEVICES=0
python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
``` ```
<a name="PREDICTION"></a>
### PREDICTION ### PREDICTION
<a name="Training_engine_prediction"></a>
* Training engine prediction * Training engine prediction
Using the model trained by paddleocr, you can quickly get prediction through the following script. Using the model trained by paddleocr, you can quickly get prediction through the following script.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册