未验证 提交 c9d32d29 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #4314 from MissPenguin/dygraph

split cpp_infer
#!/bin/bash
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function func_set_params(){
key=$1
value=$2
if [ ${key}x = "null"x ];then
echo " "
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
echo " "
else
echo "${key}=${value}"
fi
}
function func_parser_params(){
strs=$1
IFS=":"
array=(${strs})
key=${array[0]}
tmp=${array[1]}
IFS="|"
res=""
for _params in ${tmp[*]}; do
IFS="="
array=(${_params})
mode=${array[0]}
value=${array[1]}
if [[ ${mode} = ${MODE} ]]; then
IFS="|"
#echo $(func_set_params "${mode}" "${value}")
echo $value
break
fi
IFS="|"
done
echo ${res}
}
function status_check(){
last_status=$1 # the exit code
run_command=$2
run_log=$3
if [ $last_status -eq 0 ]; then
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
else
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
fi
}
......@@ -136,77 +136,3 @@ if [ ${MODE} = "serving_infer" ];then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar cd ../
fi
if [ ${MODE} = "cpp_infer" ];then
cd deploy/cpp_infer
use_opencv=$(func_parser_value "${lines[52]}")
if [ ${use_opencv} = "True" ]; then
if [ -d "opencv-3.4.7/opencv3/" ] && [ $(md5sum opencv-3.4.7.tar.gz | awk -F ' ' '{print $1}') = "faa2b5950f8bee3f03118e600c74746a" ];then
echo "################### build opencv skipped ###################"
else
echo "################### build opencv ###################"
rm -rf opencv-3.4.7.tar.gz opencv-3.4.7/
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
cd opencv-3.4.7/
install_path=$(pwd)/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
cd ../
echo "################### build opencv finished ###################"
fi
fi
echo "################### build PaddleOCR demo ####################"
if [ ${use_opencv} = "True" ]; then
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
else
OPENCV_DIR=''
fi
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DWITH_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
-DTENSORRT_DIR=${TENSORRT_DIR} \
make -j
echo "################### build PaddleOCR demo finished ###################"
fi
#!/bin/bash
source tests/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==52, NR==66{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser cpp inference model
use_opencv=$(func_parser_value "${lines[1]}")
cpp_infer_model_dir_list=$(func_parser_value "${lines[2]}")
cpp_infer_is_quant=$(func_parser_value "${lines[3]}")
# parser cpp inference
inference_cmd=$(func_parser_value "${lines[4]}")
cpp_use_gpu_key=$(func_parser_key "${lines[5]}")
cpp_use_gpu_list=$(func_parser_value "${lines[5]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[6]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[7]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[7]}")
cpp_batch_size_key=$(func_parser_key "${lines[8]}")
cpp_batch_size_list=$(func_parser_value "${lines[8]}")
cpp_use_trt_key=$(func_parser_key "${lines[9]}")
cpp_use_trt_list=$(func_parser_value "${lines[9]}")
cpp_precision_key=$(func_parser_key "${lines[10]}")
cpp_precision_list=$(func_parser_value "${lines[10]}")
cpp_infer_model_key=$(func_parser_key "${lines[11]}")
cpp_image_dir_key=$(func_parser_key "${lines[12]}")
cpp_infer_img_dir=$(func_parser_value "${lines[12]}")
cpp_infer_key1=$(func_parser_key "${lines[13]}")
cpp_infer_value1=$(func_parser_value "${lines[13]}")
cpp_benchmark_key=$(func_parser_key "${lines[14]}")
cpp_benchmark_value=$(func_parser_value "${lines[14]}")
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_cpp.log"
function func_cpp_inference(){
IFS='|'
_script=$1
_model_dir=$2
_log_path=$3
_img_dir=$4
_flag_quant=$5
# inference
for use_gpu in ${cpp_use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
continue
fi
for threads in ${cpp_cpu_threads_list[*]}; do
for batch_size in ${cpp_batch_size_list[*]}; do
_save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${cpp_use_trt_list[*]}; do
for precision in ${cpp_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
continue
fi
for batch_size in ${cpp_batch_size_list[*]}; do
_save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
cd deploy/cpp_infer
if [ ${use_opencv} = "True" ]; then
if [ -d "opencv-3.4.7/opencv3/" ] && [ $(md5sum opencv-3.4.7.tar.gz | awk -F ' ' '{print $1}') = "faa2b5950f8bee3f03118e600c74746a" ];then
echo "################### build opencv skipped ###################"
else
echo "################### build opencv ###################"
rm -rf opencv-3.4.7.tar.gz opencv-3.4.7/
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
cd opencv-3.4.7/
install_path=$(pwd)/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
cd ../
echo "################### build opencv finished ###################"
fi
fi
echo "################### build PaddleOCR demo ####################"
if [ ${use_opencv} = "True" ]; then
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
else
OPENCV_DIR=''
fi
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DWITH_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
-DTENSORRT_DIR=${TENSORRT_DIR} \
make -j
cd ../../../
echo "################### build PaddleOCR demo finished ###################"
# set cuda device
GPUID=$2
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval $env
echo "################### run test ###################"
export Count=0
IFS="|"
infer_quant_flag=(${cpp_infer_is_quant})
for infer_model in ${cpp_infer_model_dir_list[*]}; do
#run inference
is_quant=${infer_quant_flag[Count]}
func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
#!/bin/bash
source tests/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")
trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")
eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")
save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")
# parser inference model
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"
function func_inference(){
IFS='|'
_python=$1
_script=$2
_model_dir=$3
_log_path=$4
_img_dir=$5
_flag_quant=$6
# inference
for use_gpu in ${use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
for use_mkldnn in ${use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
continue
fi
for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${use_trt_list[*]}; do
for precision in ${precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
continue
fi
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${precision_key}" "${precision}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
# set cuda device
GPUID=$2
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval $env
echo "################### run test ###################"
#!/bin/bash
source tests/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==67, NR==81{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser serving
trans_model_py=$(func_parser_value "${lines[1]}")
infer_model_dir_key=$(func_parser_key "${lines[2]}")
infer_model_dir_value=$(func_parser_value "${lines[2]}")
model_filename_key=$(func_parser_key "${lines[3]}")
model_filename_value=$(func_parser_value "${lines[3]}")
params_filename_key=$(func_parser_key "${lines[4]}")
params_filename_value=$(func_parser_value "${lines[4]}")
serving_server_key=$(func_parser_key "${lines[5]}")
serving_server_value=$(func_parser_value "${lines[5]}")
serving_client_key=$(func_parser_key "${lines[6]}")
serving_client_value=$(func_parser_value "${lines[6]}")
serving_dir_value=$(func_parser_value "${lines[7]}")
web_service_py=$(func_parser_value "${lines[8]}")
web_use_gpu_key=$(func_parser_key "${lines[9]}")
web_use_gpu_list=$(func_parser_value "${lines[9]}")
web_use_mkldnn_key=$(func_parser_key "${lines[10]}")
web_use_mkldnn_list=$(func_parser_value "${lines[10]}")
web_cpu_threads_key=$(func_parser_key "${lines[11]}")
web_cpu_threads_list=$(func_parser_value "${lines[11]}")
web_use_trt_key=$(func_parser_key "${lines[12]}")
web_use_trt_list=$(func_parser_value "${lines[12]}")
web_precision_key=$(func_parser_key "${lines[13]}")
web_precision_list=$(func_parser_value "${lines[13]}")
pipeline_py=$(func_parser_value "${lines[14]}")
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_serving.log"
function func_serving(){
IFS='|'
_python=$1
_script=$2
_model_dir=$3
# pdserving
set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval $trans_model_cmd
cd ${serving_dir_value}
echo $PWD
unset https_proxy
unset http_proxy
for use_gpu in ${web_use_gpu_list[*]}; do
echo ${ues_gpu}
if [ ${use_gpu} = "null" ]; then
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ]; then
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
_save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &"
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py}"
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
elif [ ${use_gpu} = "0" ]; then
for use_trt in ${web_use_trt_list[*]}; do
for precision in ${web_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & "
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py}"
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
# set cuda device
GPUID=$2
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval $env
echo "################### run test ###################"
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册