提交 c98c5dd1 编写于 作者: qq_25193841's avatar qq_25193841

Merge remote-tracking branch 'origin/dygraph' into dygraph

...@@ -90,7 +90,7 @@ Optimizer: ...@@ -90,7 +90,7 @@ Optimizer:
PostProcess: PostProcess:
name: DistillationDBPostProcess name: DistillationDBPostProcess
model_name: ["Student", "Student2"] model_name: ["Student"]
key: head_out key: head_out
thresh: 0.3 thresh: 0.3
box_thresh: 0.6 box_thresh: 0.6
......
...@@ -44,7 +44,8 @@ public: ...@@ -44,7 +44,8 @@ public:
const int &gpu_id, const int &gpu_mem, const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads, const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const string &label_path, const bool &use_mkldnn, const string &label_path,
const bool &use_tensorrt, const std::string &precision) { const bool &use_tensorrt, const std::string &precision,
const int &rec_batch_num) {
this->use_gpu_ = use_gpu; this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id; this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem; this->gpu_mem_ = gpu_mem;
...@@ -52,6 +53,7 @@ public: ...@@ -52,6 +53,7 @@ public:
this->use_mkldnn_ = use_mkldnn; this->use_mkldnn_ = use_mkldnn;
this->use_tensorrt_ = use_tensorrt; this->use_tensorrt_ = use_tensorrt;
this->precision_ = precision; this->precision_ = precision;
this->rec_batch_num_ = rec_batch_num;
this->label_list_ = Utility::ReadDict(label_path); this->label_list_ = Utility::ReadDict(label_path);
this->label_list_.insert(this->label_list_.begin(), this->label_list_.insert(this->label_list_.begin(),
...@@ -64,7 +66,7 @@ public: ...@@ -64,7 +66,7 @@ public:
// Load Paddle inference model // Load Paddle inference model
void LoadModel(const std::string &model_dir); void LoadModel(const std::string &model_dir);
void Run(cv::Mat &img, std::vector<double> *times); void Run(std::vector<cv::Mat> img_list, std::vector<double> *times);
private: private:
std::shared_ptr<Predictor> predictor_; std::shared_ptr<Predictor> predictor_;
...@@ -82,10 +84,12 @@ private: ...@@ -82,10 +84,12 @@ private:
bool is_scale_ = true; bool is_scale_ = true;
bool use_tensorrt_ = false; bool use_tensorrt_ = false;
std::string precision_ = "fp32"; std::string precision_ = "fp32";
int rec_batch_num_ = 6;
// pre-process // pre-process
CrnnResizeImg resize_op_; CrnnResizeImg resize_op_;
Normalize normalize_op_; Normalize normalize_op_;
Permute permute_op_; PermuteBatch permute_op_;
// post-process // post-process
PostProcessor post_processor_; PostProcessor post_processor_;
......
...@@ -44,6 +44,11 @@ public: ...@@ -44,6 +44,11 @@ public:
virtual void Run(const cv::Mat *im, float *data); virtual void Run(const cv::Mat *im, float *data);
}; };
class PermuteBatch {
public:
virtual void Run(const std::vector<cv::Mat> imgs, float *data);
};
class ResizeImgType0 { class ResizeImgType0 {
public: public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len, virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
......
...@@ -50,6 +50,9 @@ public: ...@@ -50,6 +50,9 @@ public:
static cv::Mat GetRotateCropImage(const cv::Mat &srcimage, static cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box); std::vector<std::vector<int>> box);
static std::vector<int> argsort(const std::vector<float>& array);
}; };
} // namespace PaddleOCR } // namespace PaddleOCR
\ No newline at end of file
...@@ -61,7 +61,7 @@ DEFINE_string(cls_model_dir, "", "Path of cls inference model."); ...@@ -61,7 +61,7 @@ DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh."); DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related // recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model."); DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_int32(rec_batch_num, 1, "rec_batch_num."); DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary."); DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
...@@ -146,8 +146,9 @@ int main_rec(std::vector<cv::String> cv_all_img_names) { ...@@ -146,8 +146,9 @@ int main_rec(std::vector<cv::String> cv_all_img_names) {
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, char_list_file, FLAGS_enable_mkldnn, char_list_file,
FLAGS_use_tensorrt, FLAGS_precision); FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num);
std::vector<cv::Mat> img_list;
for (int i = 0; i < cv_all_img_names.size(); ++i) { for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i]; LOG(INFO) << "The predict img: " << cv_all_img_names[i];
...@@ -156,22 +157,21 @@ int main_rec(std::vector<cv::String> cv_all_img_names) { ...@@ -156,22 +157,21 @@ int main_rec(std::vector<cv::String> cv_all_img_names) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl; std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1); exit(1);
} }
img_list.push_back(srcimg);
std::vector<double> rec_times;
rec.Run(srcimg, &rec_times);
time_info[0] += rec_times[0];
time_info[1] += rec_times[1];
time_info[2] += rec_times[2];
} }
std::vector<double> rec_times;
rec.Run(img_list, &rec_times);
time_info[0] += rec_times[0];
time_info[1] += rec_times[1];
time_info[2] += rec_times[2];
if (FLAGS_benchmark) { if (FLAGS_benchmark) {
AutoLogger autolog("ocr_rec", AutoLogger autolog("ocr_rec",
FLAGS_use_gpu, FLAGS_use_gpu,
FLAGS_use_tensorrt, FLAGS_use_tensorrt,
FLAGS_enable_mkldnn, FLAGS_enable_mkldnn,
FLAGS_cpu_threads, FLAGS_cpu_threads,
1, FLAGS_rec_batch_num,
"dynamic", "dynamic",
FLAGS_precision, FLAGS_precision,
time_info, time_info,
...@@ -209,7 +209,7 @@ int main_system(std::vector<cv::String> cv_all_img_names) { ...@@ -209,7 +209,7 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, char_list_file, FLAGS_enable_mkldnn, char_list_file,
FLAGS_use_tensorrt, FLAGS_precision); FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num);
for (int i = 0; i < cv_all_img_names.size(); ++i) { for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i]; LOG(INFO) << "The predict img: " << cv_all_img_names[i];
...@@ -228,19 +228,22 @@ int main_system(std::vector<cv::String> cv_all_img_names) { ...@@ -228,19 +228,22 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
time_info_det[1] += det_times[1]; time_info_det[1] += det_times[1];
time_info_det[2] += det_times[2]; time_info_det[2] += det_times[2];
cv::Mat crop_img; std::vector<cv::Mat> img_list;
for (int j = 0; j < boxes.size(); j++) { for (int j = 0; j < boxes.size(); j++) {
crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]); cv::Mat crop_img;
crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
if (cls != nullptr) { if (cls != nullptr) {
crop_img = cls->Run(crop_img); crop_img = cls->Run(crop_img);
} }
rec.Run(crop_img, &rec_times); img_list.push_back(crop_img);
time_info_rec[0] += rec_times[0];
time_info_rec[1] += rec_times[1];
time_info_rec[2] += rec_times[2];
} }
rec.Run(img_list, &rec_times);
time_info_rec[0] += rec_times[0];
time_info_rec[1] += rec_times[1];
time_info_rec[2] += rec_times[2];
} }
if (FLAGS_benchmark) { if (FLAGS_benchmark) {
AutoLogger autolog_det("ocr_det", AutoLogger autolog_det("ocr_det",
FLAGS_use_gpu, FLAGS_use_gpu,
...@@ -257,7 +260,7 @@ int main_system(std::vector<cv::String> cv_all_img_names) { ...@@ -257,7 +260,7 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
FLAGS_use_tensorrt, FLAGS_use_tensorrt,
FLAGS_enable_mkldnn, FLAGS_enable_mkldnn,
FLAGS_cpu_threads, FLAGS_cpu_threads,
1, FLAGS_rec_batch_num,
"dynamic", "dynamic",
FLAGS_precision, FLAGS_precision,
time_info_rec, time_info_rec,
......
...@@ -15,83 +15,108 @@ ...@@ -15,83 +15,108 @@
#include <include/ocr_rec.h> #include <include/ocr_rec.h>
namespace PaddleOCR { namespace PaddleOCR {
void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) { void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) {
cv::Mat srcimg; std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
img.copyTo(srcimg); std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
cv::Mat resize_img; std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
float wh_ratio = float(srcimg.cols) / float(srcimg.rows); int img_num = img_list.size();
auto preprocess_start = std::chrono::steady_clock::now(); std::vector<float> width_list;
this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_); for (int i = 0; i < img_num; i++) {
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, }
this->is_scale_); std::vector<int> indices = Utility::argsort(width_list);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) {
auto preprocess_start = std::chrono::steady_clock::now();
this->permute_op_.Run(&resize_img, input.data()); int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
auto preprocess_end = std::chrono::steady_clock::now(); float max_wh_ratio = 0;
for (int ino = beg_img_no; ino < end_img_no; ino ++) {
// Inference. int h = img_list[indices[ino]].rows;
auto input_names = this->predictor_->GetInputNames(); int w = img_list[indices[ino]].cols;
auto input_t = this->predictor_->GetInputHandle(input_names[0]); float wh_ratio = w * 1.0 / h;
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); max_wh_ratio = max(max_wh_ratio, wh_ratio);
auto inference_start = std::chrono::steady_clock::now(); }
input_t->CopyFromCpu(input.data()); std::vector<cv::Mat> norm_img_batch;
this->predictor_->Run(); for (int ino = beg_img_no; ino < end_img_no; ino ++) {
cv::Mat srcimg;
std::vector<float> predict_batch; img_list[indices[ino]].copyTo(srcimg);
auto output_names = this->predictor_->GetOutputNames(); cv::Mat resize_img;
auto output_t = this->predictor_->GetOutputHandle(output_names[0]); this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_);
auto predict_shape = output_t->shape(); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_);
norm_img_batch.push_back(resize_img);
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1, }
int batch_width = int(ceilf(32 * max_wh_ratio)) - 1;
std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
this->permute_op_.Run(norm_img_batch, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
preprocess_diff += preprocess_end - preprocess_start;
// Inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> predict_batch;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto predict_shape = output_t->shape();
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>()); std::multiplies<int>());
predict_batch.resize(out_num); predict_batch.resize(out_num);
output_t->CopyToCpu(predict_batch.data()); output_t->CopyToCpu(predict_batch.data());
auto inference_end = std::chrono::steady_clock::now(); auto inference_end = std::chrono::steady_clock::now();
inference_diff += inference_end - inference_start;
// ctc decode
auto postprocess_start = std::chrono::steady_clock::now(); // ctc decode
std::vector<std::string> str_res; auto postprocess_start = std::chrono::steady_clock::now();
int argmax_idx; for (int m = 0; m < predict_shape[0]; m++) {
int last_index = 0; std::vector<std::string> str_res;
float score = 0.f; int argmax_idx;
int count = 0; int last_index = 0;
float max_value = 0.0f; float score = 0.f;
int count = 0;
for (int n = 0; n < predict_shape[1]; n++) { float max_value = 0.0f;
argmax_idx =
int(Utility::argmax(&predict_batch[n * predict_shape[2]], for (int n = 0; n < predict_shape[1]; n++) {
&predict_batch[(n + 1) * predict_shape[2]])); argmax_idx =
max_value = int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
float(*std::max_element(&predict_batch[n * predict_shape[2]], &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
&predict_batch[(n + 1) * predict_shape[2]])); max_value =
float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) { &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
score += max_value;
count += 1; if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
str_res.push_back(label_list_[argmax_idx]); score += max_value;
count += 1;
str_res.push_back(label_list_[argmax_idx]);
}
last_index = argmax_idx;
}
score /= count;
if (isnan(score))
continue;
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
std::cout << "\tscore: " << score << std::endl;
}
auto postprocess_end = std::chrono::steady_clock::now();
postprocess_diff += postprocess_end - postprocess_start;
} }
last_index = argmax_idx; times->push_back(double(preprocess_diff.count() * 1000));
} times->push_back(double(inference_diff.count() * 1000));
auto postprocess_end = std::chrono::steady_clock::now(); times->push_back(double(postprocess_diff.count() * 1000));
score /= count;
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
std::cout << "\tscore: " << score << std::endl;
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() * 1000));
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
} }
void CRNNRecognizer::LoadModel(const std::string &model_dir) { void CRNNRecognizer::LoadModel(const std::string &model_dir) {
// AnalysisConfig config; // AnalysisConfig config;
paddle_infer::Config config; paddle_infer::Config config;
......
...@@ -40,6 +40,17 @@ void Permute::Run(const cv::Mat *im, float *data) { ...@@ -40,6 +40,17 @@ void Permute::Run(const cv::Mat *im, float *data) {
} }
} }
void PermuteBatch::Run(const std::vector<cv::Mat> imgs, float *data) {
for (int j = 0; j < imgs.size(); j ++){
int rh = imgs[j].rows;
int rw = imgs[j].cols;
int rc = imgs[j].channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(imgs[j], cv::Mat(rh, rw, CV_32FC1, data + (j * rc + i) * rh * rw), i);
}
}
}
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean, void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale) { const std::vector<float> &scale, const bool is_scale) {
double e = 1.0; double e = 1.0;
...@@ -90,16 +101,17 @@ void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio, ...@@ -90,16 +101,17 @@ void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
imgC = rec_image_shape[0]; imgC = rec_image_shape[0];
imgH = rec_image_shape[1]; imgH = rec_image_shape[1];
imgW = rec_image_shape[2]; imgW = rec_image_shape[2];
imgW = int(32 * wh_ratio); imgW = int(32 * wh_ratio);
float ratio = float(img.cols) / float(img.rows); float ratio = float(img.cols) / float(img.rows);
int resize_w, resize_h; int resize_w, resize_h;
if (ceilf(imgH * ratio) > imgW) if (ceilf(imgH * ratio) > imgW)
resize_w = imgW; resize_w = imgW;
else else
resize_w = int(ceilf(imgH * ratio)); resize_w = int(ceilf(imgH * ratio));
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f, cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR); cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
......
...@@ -147,4 +147,17 @@ cv::Mat Utility::GetRotateCropImage(const cv::Mat &srcimage, ...@@ -147,4 +147,17 @@ cv::Mat Utility::GetRotateCropImage(const cv::Mat &srcimage,
} }
} }
std::vector<int> Utility::argsort(const std::vector<float>& array)
{
const int array_len(array.size());
std::vector<int> array_index(array_len, 0);
for (int i = 0; i < array_len; ++i)
array_index[i] = i;
std::sort(array_index.begin(), array_index.end(),
[&array](int pos1, int pos2) {return (array[pos1] < array[pos2]); });
return array_index;
}
} // namespace PaddleOCR } // namespace PaddleOCR
\ No newline at end of file
# paddle2onnx 模型转化与预测
本章节介绍 PaddleOCR 模型如何转化为 ONNX 模型,并基于 ONNX 引擎预测。
## 1. 环境准备
需要准备 Paddle2ONNX 模型转化环境,和 ONNX 模型预测环境
### Paddle2ONNX
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11,部分Paddle算子支持更低的ONNX Opset转换。
更多细节可参考 [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_zh.md)
- 安装 Paddle2ONNX
```
python3.7 -m pip install paddle2onnx
```
- 安装 ONNX
```
# 建议安装 1.4.0 版本,可根据环境更换版本号
python3.7 -m pip install onnxruntime==1.4.0
```
## 2. 模型转换
- Paddle 模型下载
有两种方式获取Paddle静态图模型:在 [model_list](../../doc/doc_ch/models_list.md) 中下载PaddleOCR提供的预测模型;
参考[模型导出说明](../../doc/doc_ch/inference.md#训练模型转inference模型)把训练好的权重转为 inference_model。
以 ppocr 检测模型为例:
```
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && cd ..
```
- 模型转换
使用 Paddle2ONNX 将Paddle静态图模型转换为ONNX模型格式:
```
paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ \
--model_filename=inference.pdmodel \
--params_filename=inference.pdiparams \
--save_file=./inference/det_mobile_onnx/model.onnx \
--opset_version=10 \
--enable_onnx_checker=True
```
执行完毕后,ONNX 模型会被保存在 `./inference/det_mobile_onnx/` 路径下
* 注意:以下几个模型暂不支持转换为 ONNX 模型:
NRTR、SAR、RARE、SRN
## 3. onnx 预测
以检测模型为例,使用 ONNX 预测可执行如下命令:
```
python3.7 ../../tools/infer/predict_det.py --use_gpu=False --use_onnx=True \
--det_model_dir=./inference/det_mobile_onnx/model.onnx \
--image_dir=../../doc/imgs/1.jpg
```
执行命令后在终端会打印出预测的检测框坐标,并在 `./inference_results/` 下保存可视化结果。
```
root INFO: 1.jpg [[[291, 295], [334, 292], [348, 844], [305, 847]], [[344, 296], [379, 294], [387, 669], [353, 671]]]
The predict time of ../../doc/imgs/1.jpg: 0.06162881851196289
The visualized image saved in ./inference_results/det_res_1.jpg
```
* 注意:ONNX暂时不支持变长预测,需要将输入resize到固定输入,预测结果可能与直接使用Paddle预测有细微不同。
...@@ -114,7 +114,7 @@ The recognition model is the same. ...@@ -114,7 +114,7 @@ The recognition model is the same.
git clone https://github.com/PaddlePaddle/PaddleOCR git clone https://github.com/PaddlePaddle/PaddleOCR
# Enter the working directory # Enter the working directory
cd PaddleOCR/deploy/pdserver/ cd PaddleOCR/deploy/pdserving/
``` ```
The pdserver directory contains the code to start the pipeline service and send prediction requests, including: The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
......
...@@ -112,7 +112,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_rec_in ...@@ -112,7 +112,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_rec_in
git clone https://github.com/PaddlePaddle/PaddleOCR git clone https://github.com/PaddlePaddle/PaddleOCR
# 进入到工作目录 # 进入到工作目录
cd PaddleOCR/deploy/pdserver/ cd PaddleOCR/deploy/pdserving/
``` ```
pdserver目录包含启动pipeline服务和发送预测请求的代码,包括: pdserver目录包含启动pipeline服务和发送预测请求的代码,包括:
``` ```
...@@ -206,7 +206,7 @@ pip3 install paddle-serving-app==0.3.1 ...@@ -206,7 +206,7 @@ pip3 install paddle-serving-app==0.3.1
1. 启动服务端程序 1. 启动服务端程序
``` ```
cd win cd win
python3 ocr_web_server.py gpu(使用gpu方式) python3 ocr_web_server.py gpu(使用gpu方式)
或者 或者
python3 ocr_web_server.py cpu(使用cpu方式) python3 ocr_web_server.py cpu(使用cpu方式)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
import sys
import numpy as np
import base64
import os
import cv2
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from ocr_reader import OCRReader
client = Client()
# TODO:load_client need to load more than one client model.
# this need to figure out some details.
client.load_client_config(sys.argv[1:])
client.connect(["127.0.0.1:9293"])
import paddle
test_img_dir = "test_img/"
ocr_reader = OCRReader(char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
def cv2_to_base64(image):
return base64.b64encode(image).decode(
'utf8') #data.tostring()).decode('utf8')
for img_file in os.listdir(test_img_dir):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data = file.read()
image = cv2_to_base64(image_data)
res_list = []
#print(image)
fetch_map = client.predict(
feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
print("fetrch map:", fetch_map)
one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True)
for res in one_batch_res:
res_list.append(res[0])
res = {"res": str(res_list)}
print(res)
...@@ -18,13 +18,19 @@ import json ...@@ -18,13 +18,19 @@ import json
import base64 import base64
import os import os
import argparse
parser = argparse.ArgumentParser(description="args for paddleserving")
parser.add_argument("--image_dir", type=str, default="../../doc/imgs/")
args = parser.parse_args()
def cv2_to_base64(image): def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8') return base64.b64encode(image).decode('utf8')
url = "http://127.0.0.1:9998/ocr/prediction" url = "http://127.0.0.1:9998/ocr/prediction"
test_img_dir = "../../doc/imgs/" test_img_dir = args.image_dir
for idx, img_file in enumerate(os.listdir(test_img_dir)): for idx, img_file in enumerate(os.listdir(test_img_dir)):
with open(os.path.join(test_img_dir, img_file), 'rb') as file: with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read() image_data1 = file.read()
...@@ -36,5 +42,4 @@ for idx, img_file in enumerate(os.listdir(test_img_dir)): ...@@ -36,5 +42,4 @@ for idx, img_file in enumerate(os.listdir(test_img_dir)):
r = requests.post(url=url, data=json.dumps(data)) r = requests.post(url=url, data=json.dumps(data))
print(r.json()) print(r.json())
test_img_dir = "../../doc/imgs/"
print("==> total number of test imgs: ", len(os.listdir(test_img_dir))) print("==> total number of test imgs: ", len(os.listdir(test_img_dir)))
...@@ -30,7 +30,12 @@ def cv2_to_base64(image): ...@@ -30,7 +30,12 @@ def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8') return base64.b64encode(image).decode('utf8')
test_img_dir = "imgs/" import argparse
parser = argparse.ArgumentParser(description="args for paddleserving")
parser.add_argument("--image_dir", type=str, default="../../doc/imgs/")
args = parser.parse_args()
test_img_dir = args.image_dir
for img_file in os.listdir(test_img_dir): for img_file in os.listdir(test_img_dir):
with open(os.path.join(test_img_dir, img_file), 'rb') as file: with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data = file.read() image_data = file.read()
......
...@@ -101,15 +101,28 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml \ ...@@ -101,15 +101,28 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml \
# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID # 单机多卡训练,通过 --gpus 参数设置使用的GPU ID
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
# 多机多卡训练,通过 --ips 参数设置使用的机器IP地址,通过 --gpus 参数设置使用的GPU ID
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
``` ```
上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。 上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。
有关配置文件的详细解释,请参考[链接](./config.md) 有关配置文件的详细解释,请参考[链接](./config.md)
您也可以通过-o参数在不需要修改yml文件的情况下,改变训练的参数,比如,调整训练的学习率为0.0001 您也可以通过-o参数在不需要修改yml文件的情况下,改变训练的参数,比如,调整训练的学习率为0.0001
```shell ```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001 python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001
``` ```
**注意:** 采用多机多卡训练时,需要替换上面命令中的ips值为您机器的地址,机器之间需要能够相互ping通。查看机器ip地址的命令为`ifconfig`
如果您想进一步加快训练速度,可以使用[自动混合精度训练](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), 以单机单卡为例,命令如下:
```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
```
<a name="22-----"></a> <a name="22-----"></a>
## 2.2 断点训练 ## 2.2 断点训练
......
...@@ -98,7 +98,19 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml -o \ ...@@ -98,7 +98,19 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml -o \
# multi-GPU training # multi-GPU training
# Set the GPU ID used by the '--gpus' parameter. # Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
# multi-Node, multi-GPU training
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. The command for viewing the IP address of the machine is `ifconfig`.
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
``` ```
### 2.2 Load Trained Model and Continue Training ### 2.2 Load Trained Model and Continue Training
......
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
"""
This code is refered from:
https://github.com/songdejia/EAST/blob/master/data_utils.py
"""
import math import math
import cv2 import cv2
import numpy as np import numpy as np
...@@ -24,10 +27,10 @@ __all__ = ['EASTProcessTrain'] ...@@ -24,10 +27,10 @@ __all__ = ['EASTProcessTrain']
class EASTProcessTrain(object): class EASTProcessTrain(object):
def __init__(self, def __init__(self,
image_shape = [512, 512], image_shape=[512, 512],
background_ratio = 0.125, background_ratio=0.125,
min_crop_side_ratio = 0.1, min_crop_side_ratio=0.1,
min_text_size = 10, min_text_size=10,
**kwargs): **kwargs):
self.input_size = image_shape[1] self.input_size = image_shape[1]
self.random_scale = np.array([0.5, 1, 2.0, 3.0]) self.random_scale = np.array([0.5, 1, 2.0, 3.0])
...@@ -282,12 +285,7 @@ class EASTProcessTrain(object): ...@@ -282,12 +285,7 @@ class EASTProcessTrain(object):
1.0 / max(min(poly_h, poly_w), 1.0) 1.0 / max(min(poly_h, poly_w), 1.0)
return score_map, geo_map, training_mask return score_map, geo_map, training_mask
def crop_area(self, def crop_area(self, im, polys, tags, crop_background=False, max_tries=50):
im,
polys,
tags,
crop_background=False,
max_tries=50):
""" """
make random crop from the input image make random crop from the input image
:param im: :param im:
...@@ -435,5 +433,4 @@ class EASTProcessTrain(object): ...@@ -435,5 +433,4 @@ class EASTProcessTrain(object):
data['score_map'] = score_map data['score_map'] = score_map
data['geo_map'] = geo_map data['geo_map'] = geo_map
data['training_mask'] = training_mask data['training_mask'] = training_mask
# print(im.shape, score_map.shape, geo_map.shape, training_mask.shape) return data
return data
\ No newline at end of file
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
......
# -*- coding:utf-8 -*- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_border_map.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
# -*- coding:utf-8 -*- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
...@@ -12,12 +24,8 @@ from shapely.geometry import Polygon ...@@ -12,12 +24,8 @@ from shapely.geometry import Polygon
__all__ = ['MakePseGt'] __all__ = ['MakePseGt']
class MakePseGt(object):
r'''
Making binary mask from detection data with ICDAR format.
Typically following the process of class `MakeICDARData`.
'''
class MakePseGt(object):
def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs): def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs):
self.kernel_num = kernel_num self.kernel_num = kernel_num
self.min_shrink_ratio = min_shrink_ratio self.min_shrink_ratio = min_shrink_ratio
...@@ -38,16 +46,20 @@ class MakePseGt(object): ...@@ -38,16 +46,20 @@ class MakePseGt(object):
text_polys *= scale text_polys *= scale
gt_kernels = [] gt_kernels = []
for i in range(1,self.kernel_num+1): for i in range(1, self.kernel_num + 1):
# s1->sn, from big to small # s1->sn, from big to small
rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1) * i rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1
text_kernel, ignore_tags = self.generate_kernel(image.shape[0:2], rate, text_polys, ignore_tags) ) * i
text_kernel, ignore_tags = self.generate_kernel(
image.shape[0:2], rate, text_polys, ignore_tags)
gt_kernels.append(text_kernel) gt_kernels.append(text_kernel)
training_mask = np.ones(image.shape[0:2], dtype='uint8') training_mask = np.ones(image.shape[0:2], dtype='uint8')
for i in range(text_polys.shape[0]): for i in range(text_polys.shape[0]):
if ignore_tags[i]: if ignore_tags[i]:
cv2.fillPoly(training_mask, text_polys[i].astype(np.int32)[np.newaxis, :, :], 0) cv2.fillPoly(training_mask,
text_polys[i].astype(np.int32)[np.newaxis, :, :],
0)
gt_kernels = np.array(gt_kernels) gt_kernels = np.array(gt_kernels)
gt_kernels[gt_kernels > 0] = 1 gt_kernels[gt_kernels > 0] = 1
...@@ -59,16 +71,25 @@ class MakePseGt(object): ...@@ -59,16 +71,25 @@ class MakePseGt(object):
data['mask'] = training_mask.astype('float32') data['mask'] = training_mask.astype('float32')
return data return data
def generate_kernel(self, img_size, shrink_ratio, text_polys, ignore_tags=None): def generate_kernel(self,
img_size,
shrink_ratio,
text_polys,
ignore_tags=None):
"""
Refer to part of the code:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/base_textdet_targets.py
"""
h, w = img_size h, w = img_size
text_kernel = np.zeros((h, w), dtype=np.float32) text_kernel = np.zeros((h, w), dtype=np.float32)
for i, poly in enumerate(text_polys): for i, poly in enumerate(text_polys):
polygon = Polygon(poly) polygon = Polygon(poly)
distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (polygon.length + 1e-6) distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (
polygon.length + 1e-6)
subject = [tuple(l) for l in poly] subject = [tuple(l) for l in poly]
pco = pyclipper.PyclipperOffset() pco = pyclipper.PyclipperOffset()
pco.AddPath(subject, pyclipper.JT_ROUND, pco.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
pyclipper.ET_CLOSEDPOLYGON)
shrinked = np.array(pco.Execute(-distance)) shrinked = np.array(pco.Execute(-distance))
if len(shrinked) == 0 or shrinked.size == 0: if len(shrinked) == 0 or shrinked.size == 0:
......
# -*- coding:utf-8 -*- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_shrink_map.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
# -*- coding:utf-8 -*- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/random_crop_data.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
"""
This part code is refered from:
https://github.com/songdejia/EAST/blob/master/data_utils.py
"""
import math import math
import cv2 import cv2
import numpy as np import numpy as np
......
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/augment.py
"""
import numpy as np import numpy as np
from .warp_mls import WarpMLS from .warp_mls import WarpMLS
......
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/warp_mls.py
"""
import numpy as np import numpy as np
...@@ -161,4 +165,4 @@ class WarpMLS: ...@@ -161,4 +165,4 @@ class WarpMLS:
dst = np.clip(dst, 0, 255) dst = np.clip(dst, 0, 255)
dst = np.array(dst, dtype=np.uint8) dst = np.array(dst, dtype=np.uint8)
return dst return dst
\ No newline at end of file
...@@ -11,6 +11,9 @@ ...@@ -11,6 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# This code is refer from: https://github.com/viig99/LS-ACELoss
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
...@@ -32,7 +35,7 @@ class ACELoss(nn.Layer): ...@@ -32,7 +35,7 @@ class ACELoss(nn.Layer):
def __call__(self, predicts, batch): def __call__(self, predicts, batch):
if isinstance(predicts, (list, tuple)): if isinstance(predicts, (list, tuple)):
predicts = predicts[-1] predicts = predicts[-1]
B, N = predicts.shape[:2] B, N = predicts.shape[:2]
div = paddle.to_tensor([N]).astype('float32') div = paddle.to_tensor([N]).astype('float32')
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
# This code is refer from: https://github.com/KaiyangZhou/pytorch-center-loss
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
...@@ -27,6 +29,7 @@ class CenterLoss(nn.Layer): ...@@ -27,6 +29,7 @@ class CenterLoss(nn.Layer):
""" """
Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016. Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
""" """
def __init__(self, def __init__(self,
num_classes=6625, num_classes=6625,
feat_dim=96, feat_dim=96,
......
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/basic_loss.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
...@@ -147,4 +150,4 @@ class BCELoss(nn.Layer): ...@@ -147,4 +150,4 @@ class BCELoss(nn.Layer):
def forward(self, input, label, mask=None, weight=None, name=None): def forward(self, input, label, mask=None, weight=None, name=None):
loss = F.binary_cross_entropy(input, label, reduction=self.reduction) loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
return loss return loss
\ No newline at end of file
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""
import paddle import paddle
from paddle import nn from paddle import nn
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
...@@ -18,12 +37,12 @@ def conv3x3(in_channel, out_channel, stride=1): ...@@ -18,12 +37,12 @@ def conv3x3(in_channel, out_channel, stride=1):
kernel_size=3, kernel_size=3,
stride=stride, stride=stride,
padding=1, padding=1,
bias_attr=False bias_attr=False)
)
class BasicBlock(nn.Layer): class BasicBlock(nn.Layer):
expansion = 1 expansion = 1
def __init__(self, in_channels, channels, stride=1, downsample=False): def __init__(self, in_channels, channels, stride=1, downsample=False):
super().__init__() super().__init__()
self.conv1 = conv3x3(in_channels, channels, stride) self.conv1 = conv3x3(in_channels, channels, stride)
...@@ -34,9 +53,13 @@ class BasicBlock(nn.Layer): ...@@ -34,9 +53,13 @@ class BasicBlock(nn.Layer):
self.downsample = downsample self.downsample = downsample
if downsample: if downsample:
self.downsample = nn.Sequential( self.downsample = nn.Sequential(
nn.Conv2D(in_channels, channels * self.expansion, 1, stride, bias_attr=False), nn.Conv2D(
nn.BatchNorm2D(channels * self.expansion), in_channels,
) channels * self.expansion,
1,
stride,
bias_attr=False),
nn.BatchNorm2D(channels * self.expansion), )
else: else:
self.downsample = nn.Sequential() self.downsample = nn.Sequential()
self.stride = stride self.stride = stride
...@@ -57,7 +80,7 @@ class BasicBlock(nn.Layer): ...@@ -57,7 +80,7 @@ class BasicBlock(nn.Layer):
out += residual out += residual
out = self.relu(out) out = self.relu(out)
return out return out
class ResNet31(nn.Layer): class ResNet31(nn.Layer):
...@@ -69,12 +92,13 @@ class ResNet31(nn.Layer): ...@@ -69,12 +92,13 @@ class ResNet31(nn.Layer):
out_indices (None | Sequence[int]): Indices of output stages. out_indices (None | Sequence[int]): Indices of output stages.
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
''' '''
def __init__(self,
in_channels=3, def __init__(self,
layers=[1, 2, 5, 3], in_channels=3,
channels=[64, 128, 256, 256, 512, 512, 512], layers=[1, 2, 5, 3],
out_indices=None, channels=[64, 128, 256, 256, 512, 512, 512],
last_stage_pool=False): out_indices=None,
last_stage_pool=False):
super(ResNet31, self).__init__() super(ResNet31, self).__init__()
assert isinstance(in_channels, int) assert isinstance(in_channels, int)
assert isinstance(last_stage_pool, bool) assert isinstance(last_stage_pool, bool)
...@@ -83,46 +107,56 @@ class ResNet31(nn.Layer): ...@@ -83,46 +107,56 @@ class ResNet31(nn.Layer):
self.last_stage_pool = last_stage_pool self.last_stage_pool = last_stage_pool
# conv 1 (Conv Conv) # conv 1 (Conv Conv)
self.conv1_1 = nn.Conv2D(in_channels, channels[0], kernel_size=3, stride=1, padding=1) self.conv1_1 = nn.Conv2D(
in_channels, channels[0], kernel_size=3, stride=1, padding=1)
self.bn1_1 = nn.BatchNorm2D(channels[0]) self.bn1_1 = nn.BatchNorm2D(channels[0])
self.relu1_1 = nn.ReLU() self.relu1_1 = nn.ReLU()
self.conv1_2 = nn.Conv2D(channels[0], channels[1], kernel_size=3, stride=1, padding=1) self.conv1_2 = nn.Conv2D(
channels[0], channels[1], kernel_size=3, stride=1, padding=1)
self.bn1_2 = nn.BatchNorm2D(channels[1]) self.bn1_2 = nn.BatchNorm2D(channels[1])
self.relu1_2 = nn.ReLU() self.relu1_2 = nn.ReLU()
# conv 2 (Max-pooling, Residual block, Conv) # conv 2 (Max-pooling, Residual block, Conv)
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True) self.pool2 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block2 = self._make_layer(channels[1], channels[2], layers[0]) self.block2 = self._make_layer(channels[1], channels[2], layers[0])
self.conv2 = nn.Conv2D(channels[2], channels[2], kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2D(
channels[2], channels[2], kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2D(channels[2]) self.bn2 = nn.BatchNorm2D(channels[2])
self.relu2 = nn.ReLU() self.relu2 = nn.ReLU()
# conv 3 (Max-pooling, Residual block, Conv) # conv 3 (Max-pooling, Residual block, Conv)
self.pool3 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True) self.pool3 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block3 = self._make_layer(channels[2], channels[3], layers[1]) self.block3 = self._make_layer(channels[2], channels[3], layers[1])
self.conv3 = nn.Conv2D(channels[3], channels[3], kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2D(
channels[3], channels[3], kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2D(channels[3]) self.bn3 = nn.BatchNorm2D(channels[3])
self.relu3 = nn.ReLU() self.relu3 = nn.ReLU()
# conv 4 (Max-pooling, Residual block, Conv) # conv 4 (Max-pooling, Residual block, Conv)
self.pool4 = nn.MaxPool2D(kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True) self.pool4 = nn.MaxPool2D(
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
self.block4 = self._make_layer(channels[3], channels[4], layers[2]) self.block4 = self._make_layer(channels[3], channels[4], layers[2])
self.conv4 = nn.Conv2D(channels[4], channels[4], kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2D(
channels[4], channels[4], kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2D(channels[4]) self.bn4 = nn.BatchNorm2D(channels[4])
self.relu4 = nn.ReLU() self.relu4 = nn.ReLU()
# conv 5 ((Max-pooling), Residual block, Conv) # conv 5 ((Max-pooling), Residual block, Conv)
self.pool5 = None self.pool5 = None
if self.last_stage_pool: if self.last_stage_pool:
self.pool5 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True) self.pool5 = nn.MaxPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block5 = self._make_layer(channels[4], channels[5], layers[3]) self.block5 = self._make_layer(channels[4], channels[5], layers[3])
self.conv5 = nn.Conv2D(channels[5], channels[5], kernel_size=3, stride=1, padding=1) self.conv5 = nn.Conv2D(
channels[5], channels[5], kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2D(channels[5]) self.bn5 = nn.BatchNorm2D(channels[5])
self.relu5 = nn.ReLU() self.relu5 = nn.ReLU()
self.out_channels = channels[-1] self.out_channels = channels[-1]
def _make_layer(self, input_channels, output_channels, blocks): def _make_layer(self, input_channels, output_channels, blocks):
layers = [] layers = []
for _ in range(blocks): for _ in range(blocks):
...@@ -130,19 +164,19 @@ class ResNet31(nn.Layer): ...@@ -130,19 +164,19 @@ class ResNet31(nn.Layer):
if input_channels != output_channels: if input_channels != output_channels:
downsample = nn.Sequential( downsample = nn.Sequential(
nn.Conv2D( nn.Conv2D(
input_channels, input_channels,
output_channels, output_channels,
kernel_size=1, kernel_size=1,
stride=1, stride=1,
bias_attr=False), bias_attr=False),
nn.BatchNorm2D(output_channels), nn.BatchNorm2D(output_channels), )
)
layers.append(
layers.append(BasicBlock(input_channels, output_channels, downsample=downsample)) BasicBlock(
input_channels, output_channels, downsample=downsample))
input_channels = output_channels input_channels = output_channels
return nn.Sequential(*layers) return nn.Sequential(*layers)
def forward(self, x): def forward(self, x):
x = self.conv1_1(x) x = self.conv1_1(x)
x = self.bn1_1(x) x = self.bn1_1(x)
...@@ -166,11 +200,11 @@ class ResNet31(nn.Layer): ...@@ -166,11 +200,11 @@ class ResNet31(nn.Layer):
x = block_layer(x) x = block_layer(x)
x = conv_layer(x) x = conv_layer(x)
x = bn_layer(x) x = bn_layer(x)
x= relu_layer(x) x = relu_layer(x)
outs.append(x) outs.append(x)
if self.out_indices is not None: if self.out_indices is not None:
return tuple([outs[i] for i in self.out_indices]) return tuple([outs[i] for i in self.out_indices])
return x return x
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
"""
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -11,22 +11,24 @@ ...@@ -11,22 +11,24 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""
from paddle import nn from paddle import nn
class PSEHead(nn.Layer): class PSEHead(nn.Layer):
def __init__(self, def __init__(self, in_channels, hidden_dim=256, out_channels=7, **kwargs):
in_channels,
hidden_dim=256,
out_channels=7,
**kwargs):
super(PSEHead, self).__init__() super(PSEHead, self).__init__()
self.conv1 = nn.Conv2D(in_channels, hidden_dim, kernel_size=3, stride=1, padding=1) self.conv1 = nn.Conv2D(
in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2D(hidden_dim) self.bn1 = nn.BatchNorm2D(hidden_dim)
self.relu1 = nn.ReLU() self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2D(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0) self.conv2 = nn.Conv2D(
hidden_dim, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, **kwargs): def forward(self, x, **kwargs):
out = self.conv1(x) out = self.conv1(x)
......
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/attention_recognition_head.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
......
...@@ -75,7 +75,7 @@ class AttentionHead(nn.Layer): ...@@ -75,7 +75,7 @@ class AttentionHead(nn.Layer):
probs_step, axis=1)], axis=1) probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1) next_input = probs_step.argmax(axis=1)
targets = next_input targets = next_input
probs = paddle.nn.functional.softmax(probs, axis=2)
return probs return probs
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/encoders/sar_encoder.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/decoders/sar_decoder.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
...@@ -275,7 +294,6 @@ class ParallelSARDecoder(BaseDecoder): ...@@ -275,7 +294,6 @@ class ParallelSARDecoder(BaseDecoder):
if img_metas is not None and self.mask: if img_metas is not None and self.mask:
valid_ratios = img_metas[-1] valid_ratios = img_metas[-1]
label = label.cuda()
lab_embedding = self.embedding(label) lab_embedding = self.embedding(label)
# bsz * seq_len * emb_dim # bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1) out_enc = out_enc.unsqueeze(1)
......
...@@ -11,64 +11,102 @@ ...@@ -11,64 +11,102 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/neck/fpn.py
"""
import paddle.nn as nn import paddle.nn as nn
import paddle import paddle
import math import math
import paddle.nn.functional as F import paddle.nn.functional as F
class Conv_BN_ReLU(nn.Layer): class Conv_BN_ReLU(nn.Layer):
def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0): def __init__(self,
in_planes,
out_planes,
kernel_size=1,
stride=1,
padding=0):
super(Conv_BN_ReLU, self).__init__() super(Conv_BN_ReLU, self).__init__()
self.conv = nn.Conv2D(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, self.conv = nn.Conv2D(
bias_attr=False) in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias_attr=False)
self.bn = nn.BatchNorm2D(out_planes, momentum=0.1) self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
self.relu = nn.ReLU() self.relu = nn.ReLU()
for m in self.sublayers(): for m in self.sublayers():
if isinstance(m, nn.Conv2D): if isinstance(m, nn.Conv2D):
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Normal(0, math.sqrt(2. / n))) m.weight = paddle.create_parameter(
shape=m.weight.shape,
dtype='float32',
default_initializer=paddle.nn.initializer.Normal(
0, math.sqrt(2. / n)))
elif isinstance(m, nn.BatchNorm2D): elif isinstance(m, nn.BatchNorm2D):
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(1.0)) m.weight = paddle.create_parameter(
m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(0.0)) shape=m.weight.shape,
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(1.0))
m.bias = paddle.create_parameter(
shape=m.bias.shape,
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(0.0))
def forward(self, x): def forward(self, x):
return self.relu(self.bn(self.conv(x))) return self.relu(self.bn(self.conv(x)))
class FPN(nn.Layer): class FPN(nn.Layer):
def __init__(self, in_channels, out_channels): def __init__(self, in_channels, out_channels):
super(FPN, self).__init__() super(FPN, self).__init__()
# Top layer # Top layer
self.toplayer_ = Conv_BN_ReLU(in_channels[3], out_channels, kernel_size=1, stride=1, padding=0) self.toplayer_ = Conv_BN_ReLU(
in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
# Lateral layers # Lateral layers
self.latlayer1_ = Conv_BN_ReLU(in_channels[2], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer1_ = Conv_BN_ReLU(
in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
self.latlayer2_ = Conv_BN_ReLU(in_channels[1], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer2_ = Conv_BN_ReLU(
in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
self.latlayer3_ = Conv_BN_ReLU(in_channels[0], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer3_ = Conv_BN_ReLU(
in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
# Smooth layers # Smooth layers
self.smooth1_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.smooth1_ = Conv_BN_ReLU(
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.smooth2_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.smooth3_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.smooth2_ = Conv_BN_ReLU(
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.smooth3_ = Conv_BN_ReLU(
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.out_channels = out_channels * 4 self.out_channels = out_channels * 4
for m in self.sublayers(): for m in self.sublayers():
if isinstance(m, nn.Conv2D): if isinstance(m, nn.Conv2D):
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', m.weight = paddle.create_parameter(
default_initializer=paddle.nn.initializer.Normal(0, shape=m.weight.shape,
math.sqrt(2. / n))) dtype='float32',
default_initializer=paddle.nn.initializer.Normal(
0, math.sqrt(2. / n)))
elif isinstance(m, nn.BatchNorm2D): elif isinstance(m, nn.BatchNorm2D):
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', m.weight = paddle.create_parameter(
default_initializer=paddle.nn.initializer.Constant(1.0)) shape=m.weight.shape,
m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', dtype='float32',
default_initializer=paddle.nn.initializer.Constant(0.0)) default_initializer=paddle.nn.initializer.Constant(1.0))
m.bias = paddle.create_parameter(
shape=m.bias.shape,
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(0.0))
def _upsample(self, x, scale=1): def _upsample(self, x, scale=1):
return F.upsample(x, scale_factor=scale, mode='bilinear') return F.upsample(x, scale_factor=scale, mode='bilinear')
...@@ -81,15 +119,15 @@ class FPN(nn.Layer): ...@@ -81,15 +119,15 @@ class FPN(nn.Layer):
p5 = self.toplayer_(f5) p5 = self.toplayer_(f5)
f4 = self.latlayer1_(f4) f4 = self.latlayer1_(f4)
p4 = self._upsample_add(p5, f4,2) p4 = self._upsample_add(p5, f4, 2)
p4 = self.smooth1_(p4) p4 = self.smooth1_(p4)
f3 = self.latlayer2_(f3) f3 = self.latlayer2_(f3)
p3 = self._upsample_add(p4, f3,2) p3 = self._upsample_add(p4, f3, 2)
p3 = self.smooth2_(p3) p3 = self.smooth2_(p3)
f2 = self.latlayer3_(f2) f2 = self.latlayer3_(f2)
p2 = self._upsample_add(p3, f2,2) p2 = self._upsample_add(p3, f2, 2)
p2 = self.smooth3_(p2) p2 = self.smooth3_(p2)
p3 = self._upsample(p3, 2) p3 = self._upsample(p3, 2)
...@@ -97,4 +135,4 @@ class FPN(nn.Layer): ...@@ -97,4 +135,4 @@ class FPN(nn.Layer):
p5 = self._upsample(p5, 8) p5 = self._upsample(p5, 8)
fuse = paddle.concat([p2, p3, p4, p5], axis=1) fuse = paddle.concat([p2, p3, p4, p5], axis=1)
return fuse return fuse
\ No newline at end of file
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
......
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/tps_spatial_transformer.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
......
...@@ -18,7 +18,6 @@ from __future__ import print_function ...@@ -18,7 +18,6 @@ from __future__ import print_function
from __future__ import unicode_literals from __future__ import unicode_literals
import copy import copy
import platform
__all__ = ['build_post_process'] __all__ = ['build_post_process']
...@@ -26,21 +25,24 @@ from .db_postprocess import DBPostProcess, DistillationDBPostProcess ...@@ -26,21 +25,24 @@ from .db_postprocess import DBPostProcess, DistillationDBPostProcess
from .east_postprocess import EASTPostProcess from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \ from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
TableLabelDecode, NRTRLabelDecode, SARLabelDecode , SEEDLabelDecode TableLabelDecode, NRTRLabelDecode, SARLabelDecode, SEEDLabelDecode
from .cls_postprocess import ClsPostProcess from .cls_postprocess import ClsPostProcess
from .pg_postprocess import PGPostProcess from .pg_postprocess import PGPostProcess
from .pse_postprocess import PSEPostProcess
def build_post_process(config, global_config=None): def build_post_process(config, global_config=None):
support_dict = [ support_dict = [
'DBPostProcess', 'PSEPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'CTCLabelDecode', 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
'PGPostProcess', 'DistillationCTCLabelDecode', 'TableLabelDecode', 'DistillationCTCLabelDecode', 'TableLabelDecode',
'DistillationDBPostProcess', 'NRTRLabelDecode', 'SARLabelDecode', 'DistillationDBPostProcess', 'NRTRLabelDecode', 'SARLabelDecode',
'SEEDLabelDecode' 'SEEDLabelDecode'
] ]
if config['name'] == 'PSEPostProcess':
from .pse_postprocess import PSEPostProcess
support_dict.append('PSEPostProcess')
config = copy.deepcopy(config) config = copy.deepcopy(config)
module_name = config.pop('name') module_name = config.pop('name')
if global_config is not None: if global_config is not None:
......
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refered from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
...@@ -190,7 +193,8 @@ class DBPostProcess(object): ...@@ -190,7 +193,8 @@ class DBPostProcess(object):
class DistillationDBPostProcess(object): class DistillationDBPostProcess(object):
def __init__(self, model_name=["student"], def __init__(self,
model_name=["student"],
key=None, key=None,
thresh=0.3, thresh=0.3,
box_thresh=0.6, box_thresh=0.6,
...@@ -201,12 +205,13 @@ class DistillationDBPostProcess(object): ...@@ -201,12 +205,13 @@ class DistillationDBPostProcess(object):
**kwargs): **kwargs):
self.model_name = model_name self.model_name = model_name
self.key = key self.key = key
self.post_process = DBPostProcess(thresh=thresh, self.post_process = DBPostProcess(
box_thresh=box_thresh, thresh=thresh,
max_candidates=max_candidates, box_thresh=box_thresh,
unclip_ratio=unclip_ratio, max_candidates=max_candidates,
use_dilation=use_dilation, unclip_ratio=unclip_ratio,
score_mode=score_mode) use_dilation=use_dilation,
score_mode=score_mode)
def __call__(self, predicts, shape_list): def __call__(self, predicts, shape_list):
results = {} results = {}
......
""" """
Locality aware nms. Locality aware nms.
This code is refered from: https://github.com/songdejia/EAST/blob/master/locality_aware_nms.py
""" """
import numpy as np import numpy as np
......
## 编译 ## 编译
code from https://github.com/whai362/pan_pp.pytorch This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/post_processing/pse
```python ```python
python3 setup.py build_ext --inplace python3 setup.py build_ext --inplace
``` ```
...@@ -21,8 +21,9 @@ ori_path = os.getcwd() ...@@ -21,8 +21,9 @@ ori_path = os.getcwd()
os.chdir('ppocr/postprocess/pse_postprocess/pse') os.chdir('ppocr/postprocess/pse_postprocess/pse')
if subprocess.call( if subprocess.call(
'{} setup.py build_ext --inplace'.format(python_path), shell=True) != 0: '{} setup.py build_ext --inplace'.format(python_path), shell=True) != 0:
raise RuntimeError('Cannot compile pse: {}'.format( raise RuntimeError(
os.path.dirname(os.path.realpath(__file__)))) 'Cannot compile pse: {}, if your system is windows, you need to install all the default components of `desktop development using C++` in visual studio 2019+'.
format(os.path.dirname(os.path.realpath(__file__))))
os.chdir(ori_path) os.chdir(ori_path)
from .pse import pse from .pse import pse
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
# You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
...@@ -47,7 +51,8 @@ class PSEPostProcess(object): ...@@ -47,7 +51,8 @@ class PSEPostProcess(object):
pred = outs_dict['maps'] pred = outs_dict['maps']
if not isinstance(pred, paddle.Tensor): if not isinstance(pred, paddle.Tensor):
pred = paddle.to_tensor(pred) pred = paddle.to_tensor(pred)
pred = F.interpolate(pred, scale_factor=4 // self.scale, mode='bilinear') pred = F.interpolate(
pred, scale_factor=4 // self.scale, mode='bilinear')
score = F.sigmoid(pred[:, 0, :, :]) score = F.sigmoid(pred[:, 0, :, :])
...@@ -60,7 +65,9 @@ class PSEPostProcess(object): ...@@ -60,7 +65,9 @@ class PSEPostProcess(object):
boxes_batch = [] boxes_batch = []
for batch_index in range(pred.shape[0]): for batch_index in range(pred.shape[0]):
boxes, scores = self.boxes_from_bitmap(score[batch_index], kernels[batch_index], shape_list[batch_index]) boxes, scores = self.boxes_from_bitmap(score[batch_index],
kernels[batch_index],
shape_list[batch_index])
boxes_batch.append({'points': boxes, 'scores': scores}) boxes_batch.append({'points': boxes, 'scores': scores})
return boxes_batch return boxes_batch
...@@ -98,15 +105,14 @@ class PSEPostProcess(object): ...@@ -98,15 +105,14 @@ class PSEPostProcess(object):
mask = np.zeros((box_height, box_width), np.uint8) mask = np.zeros((box_height, box_width), np.uint8)
mask[points[:, 1], points[:, 0]] = 255 mask[points[:, 1], points[:, 0]] = 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
bbox = np.squeeze(contours[0], 1) bbox = np.squeeze(contours[0], 1)
else: else:
raise NotImplementedError raise NotImplementedError
bbox[:, 0] = np.clip( bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w)
np.round(bbox[:, 0] / ratio_w), 0, src_w) bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h)
bbox[:, 1] = np.clip(
np.round(bbox[:, 1] / ratio_h), 0, src_h)
boxes.append(bbox) boxes.append(bbox)
scores.append(score_i) scores.append(score_i)
return boxes, scores return boxes, scores
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -11,18 +11,23 @@ ...@@ -11,18 +11,23 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/loss/iou.py
"""
import paddle import paddle
EPS = 1e-6 EPS = 1e-6
def iou_single(a, b, mask, n_class): def iou_single(a, b, mask, n_class):
valid = mask == 1 valid = mask == 1
a = a.masked_select(valid) a = a.masked_select(valid)
b = b.masked_select(valid) b = b.masked_select(valid)
miou = [] miou = []
for i in range(n_class): for i in range(n_class):
if a.shape == [0] and a.shape==b.shape: if a.shape == [0] and a.shape == b.shape:
inter = paddle.to_tensor(0.0) inter = paddle.to_tensor(0.0)
union = paddle.to_tensor(0.0) union = paddle.to_tensor(0.0)
else: else:
...@@ -32,6 +37,7 @@ def iou_single(a, b, mask, n_class): ...@@ -32,6 +37,7 @@ def iou_single(a, b, mask, n_class):
miou = sum(miou) / len(miou) miou = sum(miou) / len(miou)
return miou return miou
def iou(a, b, mask, n_class=2, reduce=True): def iou(a, b, mask, n_class=2, reduce=True):
batch_size = a.shape[0] batch_size = a.shape[0]
...@@ -39,10 +45,10 @@ def iou(a, b, mask, n_class=2, reduce=True): ...@@ -39,10 +45,10 @@ def iou(a, b, mask, n_class=2, reduce=True):
b = b.reshape([batch_size, -1]) b = b.reshape([batch_size, -1])
mask = mask.reshape([batch_size, -1]) mask = mask.reshape([batch_size, -1])
iou = paddle.zeros((batch_size,), dtype='float32') iou = paddle.zeros((batch_size, ), dtype='float32')
for i in range(batch_size): for i in range(batch_size):
iou[i] = iou_single(a[i], b[i], mask[i], n_class) iou[i] = iou_single(a[i], b[i], mask[i], n_class)
if reduce: if reduce:
iou = paddle.mean(iou) iou = paddle.mean(iou)
return iou return iou
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -11,6 +11,10 @@ ...@@ -11,6 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/PytorchOCR/blob/master/torchocr/utils/logging.py
"""
import os import os
import sys import sys
......
===========================train_params===========================
model_name:ocr_det
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:amp
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs
===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
null:null
===========================lite_params===========================
inference:./ocr_db_crnn det
infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb
--cpu_threads:1|4
--batch_size:1
--power_mode:LITE_POWER_HIGH|LITE_POWER_LOW
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/|./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
===========================train_params===========================
model_name:ocr_det
python:python3.7
gpu_list:xx.xx.xx.xx,xx.xx.xx.xx;0,1
Global.use_gpu:True|True
Global.auto_cast:null|amp
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs
===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
null:null
===========================lite_params===========================
inference:./ocr_db_crnn det
infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb
--cpu_threads:1|4
--batch_size:1
--power_mode:LITE_POWER_HIGH|LITE_POWER_LOW
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/|./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
===========================train_params===========================
model_name:ocr_det
python:python
gpu_list:null
Global.use_gpu:null
Global.auto_cast:null
Global.epoch_num:null
Global.save_model_dir:null
Train.loader.batch_size_per_card:null
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:null
null:null
##
trainer:null
norm_train:null
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:null
norm_export:null
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/ch_ppocr_mobile_v2.0_det_infer
infer_export:null
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp16|fp32
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================train_params===========================
model_name:ocr_det
python:python
gpu_list:-1
Global.use_gpu:False
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:False
--enable_mkldnn:False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False
--precision:fp32
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:False
--enable_mkldnn:False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False
--precision:fp32
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py|pipeline_rpc_client.py
--image_dir=../../doc/imgs
===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:False
--enable_mkldnn:False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
null:null
===========================train_params=========================== ===========================train_params===========================
model_name:ocr_det model_name:ocr_det
python:python3.7 python:python3.7
gpu_list:0|0,1|10.21.226.181,10.21.226.133;0,1 gpu_list:0|0,1
Global.use_gpu:True|True|True Global.use_gpu:True|True
Global.auto_cast:fp32|amp Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
...@@ -80,7 +80,8 @@ op.det.local_service_conf.use_mkldnn:True|False ...@@ -80,7 +80,8 @@ op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6 op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8 op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs pipline:pipeline_rpc_client.py|pipeline_http_client.py
--image_dir:../../doc/imgs
===========================kl_quant_params=========================== ===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/ infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
...@@ -108,3 +109,15 @@ infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2 ...@@ -108,3 +109,15 @@ infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2
--config_dir:./config.txt --config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt --rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True --benchmark:True
===========================paddle2onnx_params===========================
2onnx: paddle2onnx
--model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--save_file:./inference/det_mobile_onnx/model.onnx
--opset_version:10
--enable_onnx_checker:True
inference:tools/infer/predict_det.py
--use_gpu:False
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
\ No newline at end of file
...@@ -80,4 +80,5 @@ op.det.local_service_conf.use_mkldnn:True|False ...@@ -80,4 +80,5 @@ op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6 op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8 op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs pipline:pipeline_http_client.py|pipeline_rpc_client.py
--image_dir=../../doc/imgs
...@@ -80,4 +80,5 @@ op.rec.local_service_conf.use_mkldnn:True|False ...@@ -80,4 +80,5 @@ op.rec.local_service_conf.use_mkldnn:True|False
op.rec.local_service_conf.thread_num:1|6 op.rec.local_service_conf.thread_num:1|6
op.rec.local_service_conf.use_trt:False|True op.rec.local_service_conf.use_trt:False|True
op.rec.local_service_conf.precision:fp32|fp16|int8 op.rec.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs_words_en pipline:pipeline_http_client.py|pipeline_rpc_client.py
--image_dir=../../doc/imgs_words_en
...@@ -80,4 +80,5 @@ op.rec.local_service_conf.use_mkldnn:True|False ...@@ -80,4 +80,5 @@ op.rec.local_service_conf.use_mkldnn:True|False
op.rec.local_service_conf.thread_num:1|6 op.rec.local_service_conf.thread_num:1|6
op.rec.local_service_conf.use_trt:False|True op.rec.local_service_conf.use_trt:False|True
op.rec.local_service_conf.precision:fp32|fp16|int8 op.rec.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs_words_en pipline:pipeline_http_client.py|pipeline_rpc_client.py
--image_dir=../../doc/imgs_words_en
===========================train_params===========================
model_name:ocr_det
python:python
gpu_list:0
Global.use_gpu:True
Global.auto_cast:fp32|amp
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py|pipeline_rpc_client.py
--image_dir=../../doc/imgs
===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
null:null
===========================lite_params===========================
inference:./ocr_db_crnn det
infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb
--cpu_threads:1|4
--batch_size:1
--power_mode:LITE_POWER_HIGH|LITE_POWER_LOW
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/|./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
# Jeston端基础训练预测功能测试
Jeston端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,由于Jeston端CPU较差,Jeston只需要测试TIPC关于GPU和TensorRT预测推理的部分即可。
## 1. 测试结论汇总
- 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型``量化模型`,这两类模型对应的预测功能汇总如下:
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: |
| 正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
| 量化模型 | GPU | 1/6 | int8 | - | - |
## 2. 测试流程
环境准备只需要Python环境即可,安装PaddlePaddle等依赖参考下述文档。
### 2.1 安装依赖
- 安装PaddlePaddle >= 2.0
- 安装PaddleOCR依赖
```
pip install -r ../requirements.txt
```
- 安装autolog(规范化日志输出工具)
```
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip install -r requirements.txt
python setup.py bdist_wheel
pip install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../
```
- 安装PaddleSlim (可选)
```
# 如果要测试量化、裁剪等功能,需要安装PaddleSlim
pip install paddleslim
```
### 2.2 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。
`test_train_inference_python.sh`包含5种[运行模式](./test_train_inference_python.md),在Jeston端,仅需要测试预测推理的模式即可:
```
- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'whole_infer'
# 用法1:
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/jeston_ppocr_det_mobile_params.txt 'whole_infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/jeston_ppocr_det_mobile_params.txt 'whole_infer' '1'
```
运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如`lite_train_lite_infer`模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
```
test_tipc/output/
|- results_python.log # 运行指令状态的日志
|- python_infer_gpu_usetensorrt_True_precision_fp32_batchsize_1.log # GPU上开启TensorRT,batch_size=1条件下的预测运行日志
......
```
其中`results_python.log`中包含了每条指令的运行状态,如果运行成功会输出:
```
Run successfully with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !
Run successfully with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log 2>&1 !
Run successfully with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp16 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log 2>&1 !
```
如果运行失败,会输出:
```
Run failed with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !
Run failed with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log 2>&1 !
Run failed with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp16 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log 2>&1 !
```
可以很方便的根据`results_python.log`中的内容判定哪一个指令运行错误。
### 2.3 精度测试
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
- 提取日志中的预测坐标;
- 从本地文件中提取保存好的坐标结果;
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
#### 使用方式
运行命令:
```shell
python test_tipc/compare_results.py --gt_file=./test_tipc/results/python_*.txt --log_file=./test_tipc/output/python_*.log --atol=1e-3 --rtol=1e-3
```
参数介绍:
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在test_tipc/result/ 文件夹下
- log_file: 指向运行test_tipc/test_train_inference_python.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持python_infer_*.log格式传入
- atol: 设置的绝对误差
- rtol: 设置的相对误差
#### 运行结果
正常运行效果如下:
```
Assert allclose passed! The results of python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log and ./test_tipc/results/python_ppocr_det_mobile_results_fp32.txt are consistent!
```
出现不一致结果时的运行输出:
```
......
Traceback (most recent call last):
File "test_tipc/compare_results.py", line 140, in <module>
format(filename, gt_filename))
ValueError: The results of python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log and the results of ./test_tipc/results/python_ppocr_det_mobile_results_fp32.txt are inconsistent!
```
## 3. 更多教程
本文档为功能测试用,更丰富的训练预测使用教程请参考:
[模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/training.md)
[基于Python预测引擎推理](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/inference.md)
# Mac端基础训练预测功能测试
Mac端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型CPU训练,包括裁剪、量化、蒸馏训练,以及评估、CPU推理等基本功能。
注:Mac端测试用法同linux端测试方法类似,但是无需测试需要在GPU上运行的测试。
## 1. 测试结论汇总
- 训练相关:
| 算法名称 | 模型名称 | 单机单卡(CPU) | 单机多卡 | 多机多卡 | 模型压缩(CPU) |
| :---- | :---- | :---- | :---- | :---- | :---- |
| DB | ch_ppocr_mobile_v2.0_det| 正常训练 | - | - | 正常训练:FPGM裁剪、PACT量化 <br> 离线量化(无需训练) |
- 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型``量化模型`,这两类模型对应的预测功能汇总如下,
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: |
| 正常模型 | CPU | 1/6 | - | fp32 | 支持 |
| 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程
Mac端无GPU,环境准备只需要Python环境即可,安装PaddlePaddle等依赖参考下述文档。
### 2.1 安装依赖
- 安装PaddlePaddle >= 2.0
- 安装PaddleOCR依赖
```
pip install -r ../requirements.txt
```
- 安装autolog(规范化日志输出工具)
```
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip install -r requirements.txt
python setup.py bdist_wheel
pip install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../
```
- 安装PaddleSlim (可选)
```
# 如果要测试量化、裁剪等功能,需要安装PaddleSlim
pip install paddleslim
```
### 2.2 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。
`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
- 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```shell
# 同linux端运行不同的是,Mac端测试使用新的配置文件mac_ppocr_det_mobile_params.txt,
# 配置文件中默认去掉了GPU和mkldnn相关的测试链条
bash test_tipc/prepare.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'lite_train_lite_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'lite_train_lite_infer'
```
- 模式2:lite_train_whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'lite_train_whole_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'lite_train_whole_infer'
```
- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'whole_infer'
# 用法1:
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'whole_infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'whole_infer' '1'
```
- 模式4:whole_train_whole_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;(Mac端不建议运行此模式)
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'whole_train_whole_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'whole_train_whole_infer'
```
- 模式5:klquant_whole_infer,测试离线量化;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/mac_ppocr_det_mobile_params.txt 'klquant_whole_infer'
bash test_tipc/test_train_inference_python.sh test_tipc/configs/mac_ppocr_det_mobile_params.txt 'klquant_whole_infer'
```
运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如`lite_train_lite_infer`模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
```
test_tipc/output/
|- results_python.log # 运行指令状态的日志
|- norm_train_gpus_-1_autocast_null/ # CPU上正常训练的训练日志和模型保存文件夹
|- pact_train_gpus_-1_autocast_null/ # CPU上量化训练的训练日志和模型保存文件夹
......
|- python_infer_cpu_usemkldnn_False_threads_1_batchsize_1.log # CPU上关闭Mkldnn线程数设置为1,测试batch_size=1条件下的预测运行日志
......
```
其中`results_python.log`中包含了每条指令的运行状态,如果运行成功会输出:
```
Run successfully with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=False Global.save_model_dir=./tests/output/norm_train_gpus_-1_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 !
Run successfully with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_-1_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_-1_autocast_null!
......
```
如果运行失败,会输出:
```
Run failed with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=Faslse Global.save_model_dir=./tests/output/norm_train_gpus_-1_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 !
Run failed with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_-1_autocast_null!
......
```
可以很方便的根据`results_python.log`中的内容判定哪一个指令运行错误。
### 2.3 精度测试
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
- 提取日志中的预测坐标;
- 从本地文件中提取保存好的坐标结果;
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
#### 使用方式
运行命令:
```shell
python test_tipc/compare_results.py --gt_file=./test_tipc/results/python_*.txt --log_file=./test_tipc/output/python_*.log --atol=1e-3 --rtol=1e-3
```
参数介绍:
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在test_tipc/result/ 文件夹下
- log_file: 指向运行test_tipc/test_train_inference_python.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持python_infer_*.log格式传入
- atol: 设置的绝对误差
- rtol: 设置的相对误差
#### 运行结果
正常运行效果如下图:
<img src="compare_right.png" width="1000">
出现不一致结果时的运行输出:
<img src="compare_wrong.png" width="1000">
## 3. 更多教程
本文档为功能测试用,更丰富的训练预测使用教程请参考:
[模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/training.md)
[基于Python预测引擎推理](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/inference.md)
...@@ -14,6 +14,8 @@ C++预测功能测试的主程序为`test_inference_cpp.sh`,可以测试基于 ...@@ -14,6 +14,8 @@ C++预测功能测试的主程序为`test_inference_cpp.sh`,可以测试基于
| 量化模型 | CPU | 1/6 | - | int8 | 支持 | | 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程 ## 2. 测试流程
运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。
### 2.1 功能测试 ### 2.1 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```test_tipc/output```目录下生成`cpp_infer_*.log`后缀的日志文件。 先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```test_tipc/output```目录下生成`cpp_infer_*.log`后缀的日志文件。
...@@ -26,6 +28,32 @@ bash test_tipc/test_inference_cpp.sh ./test_tipc/configs/ppocr_det_mobile_params ...@@ -26,6 +28,32 @@ bash test_tipc/test_inference_cpp.sh ./test_tipc/configs/ppocr_det_mobile_params
bash test_tipc/test_inference_cpp.sh ./test_tipc/configs/ppocr_det_mobile_params.txt '1' bash test_tipc/test_inference_cpp.sh ./test_tipc/configs/ppocr_det_mobile_params.txt '1'
``` ```
运行预测指令后,在`test_tipc/output`文件夹下自动会保存运行日志,包括以下文件:
```shell
test_tipc/output/
|- results_cpp.log # 运行指令状态的日志
|- cpp_infer_cpu_usemkldnn_False_threads_1_precision_fp32_batchsize_1.log # CPU上不开启Mkldnn,线程数设置为1,测试batch_size=1条件下的预测运行日志
|- cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log # CPU上不开启Mkldnn,线程数设置为6,测试batch_size=1条件下的预测运行日志
|- cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log # GPU上不开启TensorRT,测试batch_size=1的fp32精度预测日志
|- cpp_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的fp16精度预测日志
......
```
其中results_cpp.log中包含了每条指令的运行状态,如果运行成功会输出:
```
Run successfully with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmar k=True > ./test_tipc/output/cpp_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 !
Run successfully with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark =True > ./test_tipc/output/cpp_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !
......
```
如果运行失败,会输出:
```
Run failed with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=True --use_tensorrt=True --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/cpp_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log 2>&1 !
Run failed with command - ./deploy/cpp_infer/build/ppocr det --use_gpu=True --use_tensorrt=True --precision=fp16 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/cpp_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log 2>&1 !
......
```
可以很方便的根据results_cpp.log中的内容判定哪一个指令运行错误。
### 2.2 精度测试 ### 2.2 精度测试
......
...@@ -20,6 +20,7 @@ Lite预测功能测试的主程序为`test_lite.sh`,可以测试基于Lite预 ...@@ -20,6 +20,7 @@ Lite预测功能测试的主程序为`test_lite.sh`,可以测试基于Lite预
## 2. 测试流程 ## 2. 测试流程
运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。
### 2.1 功能测试 ### 2.1 功能测试
......
# Paddle2onnx预测功能测试
PaddleServing预测功能测试的主程序为`test_paddle2onnx.sh`,可以测试Paddle2ONNX的模型转化功能,并验证正确性。
## 1. 测试结论汇总
基于训练是否使用量化,进行本测试的模型可以分为`正常模型``量化模型`,这两类模型对应的Paddle2ONNX预测功能汇总如下:
| 模型类型 |device |
| ---- | ---- |
| 正常模型 | GPU |
| 正常模型 | CPU |
| 量化模型 | GPU |
| 量化模型 | CPU |
## 2. 测试流程
### 2.1 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_paddle2onnx.sh`进行测试,最终在```test_tipc/output```目录下生成`paddle2onnx_infer_*.log`后缀的日志文件。
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt "paddle2onnx_infer"
# 用法:
bash test_tipc/test_paddle2onnx.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
```
#### 运行结果
各测试的运行情况会打印在 `test_tipc/output/results_paddle2onnx.log` 中:
运行成功时会输出:
```
Run successfully with command - paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --model_filename=inference.pdmodel --params_filename=inference.pdiparams --save_file=./inference/det_mobile_onnx/model.onnx --opset_version=10 --enable_onnx_checker=True!
Run successfully with command - python test_tipc/onnx_inference/predict_det.py --use_gpu=False --image_dir=./inference/ch_det_data_50/all-sum-510/ --det_model_dir=./inference/det_mobile_onnx/model.onnx 2>&1 !
```
运行失败时会输出:
```
Run failed with command - paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --model_filename=inference.pdmodel --params_filename=inference.pdiparams --save_file=./inference/det_mobile_onnx/model.onnx --opset_version=10 --enable_onnx_checker=True!
...
```
## 3. 更多教程
本文档为功能测试用,更详细的Paddle2onnx预测使用教程请参考:[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX)
...@@ -4,7 +4,7 @@ PaddleServing预测功能测试的主程序为`test_serving.sh`,可以测试 ...@@ -4,7 +4,7 @@ PaddleServing预测功能测试的主程序为`test_serving.sh`,可以测试
## 1. 测试结论汇总 ## 1. 测试结论汇总
基于训练是否使用量化,进行本测试的模型可以分为`正常模型``量化模型`,这两类模型对应的C++预测功能汇总如下: 基于训练是否使用量化,进行本测试的模型可以分为`正常模型``量化模型`,这两类模型对应的Serving预测功能汇总如下:
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 | | 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: | | ---- | ---- | ---- | :----: | :----: | :----: |
...@@ -14,6 +14,8 @@ PaddleServing预测功能测试的主程序为`test_serving.sh`,可以测试 ...@@ -14,6 +14,8 @@ PaddleServing预测功能测试的主程序为`test_serving.sh`,可以测试
| 量化模型 | CPU | 1/6 | - | int8 | 支持 | | 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程 ## 2. 测试流程
运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。
### 2.1 功能测试 ### 2.1 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_serving.sh`进行测试,最终在```test_tipc/output```目录下生成`serving_infer_*.log`后缀的日志文件。 先运行`prepare.sh`准备数据和模型,然后运行`test_serving.sh`进行测试,最终在```test_tipc/output```目录下生成`serving_infer_*.log`后缀的日志文件。
......
# 基础训练预测功能测试 # Linux端基础训练预测功能测试
基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 Linux端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
- Mac端基础训练预测功能测试参考[链接](./mac_test_train_inference_python.md)
- Windows端基础训练预测功能测试参考[链接](./win_test_train_inference_python.md)
## 1. 测试结论汇总 ## 1. 测试结论汇总
...@@ -22,12 +25,15 @@ ...@@ -22,12 +25,15 @@
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 | | 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: | | ---- | ---- | ---- | :----: | :----: | :----: |
| 正常模型 | GPU | 1/6 | fp32/fp16 | - | - | | 正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
| 正常模型 | CPU | 1/6 | - | fp32 | 支持 | | 正常模型 | CPU | 1/6 | - | fp32/fp16 | 支持 |
| 量化模型 | GPU | 1/6 | int8 | - | - | | 量化模型 | GPU | 1/6 | int8 | - | - |
| 量化模型 | CPU | 1/6 | - | int8 | 支持 | | 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程 ## 2. 测试流程
运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。
### 2.1 安装依赖 ### 2.1 安装依赖
- 安装PaddlePaddle >= 2.0 - 安装PaddlePaddle >= 2.0
- 安装PaddleOCR依赖 - 安装PaddleOCR依赖
...@@ -43,6 +49,11 @@ ...@@ -43,6 +49,11 @@
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../ cd ../
``` ```
- 安装PaddleSlim (可选)
```
# 如果要测试量化、裁剪等功能,需要安装PaddleSlim
pip3 install paddleslim
```
### 2.2 功能测试 ### 2.2 功能测试
...@@ -84,6 +95,32 @@ bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt 'klqua ...@@ -84,6 +95,32 @@ bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt 'klqua
bash test_tipc/test_train_inference_python.sh test_tipc/configs/ppocr_det_mobile_params.txt 'klquant_whole_infer' bash test_tipc/test_train_inference_python.sh test_tipc/configs/ppocr_det_mobile_params.txt 'klquant_whole_infer'
``` ```
运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
```
test_tipc/output/
|- results_python.log # 运行指令状态的日志
|- norm_train_gpus_0_autocast_null/ # GPU 0号卡上正常训练的训练日志和模型保存文件夹
|- pact_train_gpus_0_autocast_null/ # GPU 0号卡上量化训练的训练日志和模型保存文件夹
......
|- python_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log # CPU上开启Mkldnn线程数设置为1,测试batch_size=1条件下的预测运行日志
|- python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的半精度预测日志
......
```
其中`results_python.log`中包含了每条指令的运行状态,如果运行成功会输出:
```
Run successfully with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=True Global.save_model_dir=./tests/output/norm_train_gpus_0_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 !
Run successfully with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_0_autocast_null!
......
```
如果运行失败,会输出:
```
Run failed with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=True Global.save_model_dir=./tests/output/norm_train_gpus_0_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 !
Run failed with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_0_autocast_null!
......
```
可以很方便的根据`results_python.log`中的内容判定哪一个指令运行错误。
### 2.3 精度测试 ### 2.3 精度测试
......
# Windows端基础训练预测功能测试
Windows端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
## 1. 测试结论汇总
- 训练相关:
| 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) |
| :---- | :---- | :---- | :---- | :---- | :---- |
| DB | ch_ppocr_mobile_v2.0_det| 正常训练 <br> 混合精度 | - | - | 正常训练:FPGM裁剪、PACT量化 <br> 离线量化(无需训练) |
- 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型``量化模型`,这两类模型对应的预测功能汇总如下:
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: |
| 正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
| 正常模型 | CPU | 1/6 | - | fp32/fp16 | 支持 |
| 量化模型 | GPU | 1/6 | int8 | - | - |
| 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程
运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。
另外,由于Windows上和linux的路径管理方式不同,可以在win上安装gitbash终端,在gitbash中执行指令的方式和在linux端执行指令方式相同,更方便tipc测试。gitbash[下载链接](https://git-scm.com/download/win)
### 2.1 安装依赖
- 安装PaddlePaddle >= 2.0
- 安装PaddleOCR依赖
```
pip install -r ../requirements.txt
```
- 安装autolog(规范化日志输出工具)
```
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip install -r requirements.txt
python setup.py bdist_wheel
pip install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../
```
- 安装PaddleSlim (可选)
```
# 如果要测试量化、裁剪等功能,需要安装PaddleSlim
pip install paddleslim
```
### 2.2 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。
`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
- 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'lite_train_lite_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'lite_train_lite_infer'
```
- 模式2:lite_train_whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'lite_train_whole_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'lite_train_whole_infer'
```
- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'whole_infer'
# 用法1:
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'whole_infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'whole_infer' '1'
```
- 模式4:whole_train_whole_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'whole_train_whole_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'whole_train_whole_infer'
```
- 模式5:klquant_whole_infer,测试离线量化;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/win_ppocr_det_mobile_params.txt 'klquant_whole_infer'
bash test_tipc/test_train_inference_python.sh test_tipc/configs/win_ppocr_det_mobile_params.txt 'klquant_whole_infer'
```
运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
```
test_tipc/output/
|- results_python.log # 运行指令状态的日志
|- norm_train_gpus_0_autocast_null/ # GPU 0号卡上正常训练的训练日志和模型保存文件夹
|- pact_train_gpus_0_autocast_null/ # GPU 0号卡上量化训练的训练日志和模型保存文件夹
......
|- python_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log # CPU上开启Mkldnn线程数设置为1,测试batch_size=1条件下的预测运行日志
|- python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的半精度预测日志
......
```
其中`results_python.log`中包含了每条指令的运行状态,如果运行成功会输出:
```
Run successfully with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=True Global.save_model_dir=./tests/output/norm_train_gpus_0_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 !
Run successfully with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_0_autocast_null!
......
```
如果运行失败,会输出:
```
Run failed with command - python3.7 tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained Global.use_gpu=True Global.save_model_dir=./tests/output/norm_train_gpus_0_autocast_null Global.epoch_num=1 Train.loader.batch_size_per_card=2 !
Run failed with command - python3.7 tools/export_model.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./tests/output/norm_train_gpus_0_autocast_null/latest Global.save_inference_dir=./tests/output/norm_train_gpus_0_autocast_null!
......
```
可以很方便的根据`results_python.log`中的内容判定哪一个指令运行错误。
### 2.3 精度测试
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
- 提取日志中的预测坐标;
- 从本地文件中提取保存好的坐标结果;
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
#### 使用方式
运行命令:
```shell
python test_tipc/compare_results.py --gt_file=./test_tipc/results/python_*.txt --log_file=./test_tipc/output/python_*.log --atol=1e-3 --rtol=1e-3
```
参数介绍:
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在test_tipc/result/ 文件夹下
- log_file: 指向运行test_tipc/test_train_inference_python.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持python_infer_*.log格式传入
- atol: 设置的绝对误差
- rtol: 设置的相对误差
#### 运行结果
正常运行效果如下图:
<img src="compare_right.png" width="1000">
出现不一致结果时的运行输出:
<img src="compare_wrong.png" width="1000">
## 3. 更多教程
本文档为功能测试用,更丰富的训练预测使用教程请参考:
[模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/training.md)
[基于Python预测引擎推理](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/inference.md)
...@@ -32,122 +32,124 @@ model_name=$(func_parser_value "${lines[1]}") ...@@ -32,122 +32,124 @@ model_name=$(func_parser_value "${lines[1]}")
trainer_list=$(func_parser_value "${lines[14]}") trainer_list=$(func_parser_value "${lines[14]}")
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
# 'whole_infer', 'klquant_whole_infer',
# 'cpp_infer', 'serving_infer', 'lite_infer']
MODE=$2 MODE=$2
if [ ${MODE} = "lite_train_lite_infer" ];then if [ ${MODE} = "lite_train_lite_infer" ];then
# pretrain lite train data # pretrain lite train data
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
if [ ${model_name} == "PPOCRv2_ocr_det" ]; then if [ ${model_name} == "PPOCRv2_ocr_det" ]; then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../ cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
fi fi
cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../ cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
rm -rf ./train_data/ic15_data rm -rf ./train_data/ic15_data
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar --no-check-certificate
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./deploy/slim/prune https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/sen.pickle wget -nc -P ./deploy/slim/prune https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/sen.pickle --no-check-certificate
cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar
ln -s ./icdar2015_lite ./icdar2015 ln -s ./icdar2015_lite ./icdar2015
cd ../ cd ../
cd ./inference && tar xf rec_inference.tar && cd ../ cd ./inference && tar xf rec_inference.tar && cd ../
elif [ ${MODE} = "whole_train_whole_infer" ];then elif [ ${MODE} = "whole_train_whole_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
rm -rf ./train_data/ic15_data rm -rf ./train_data/ic15_data
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar --no-check-certificate
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar --no-check-certificate
cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../ cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../
if [ ${model_name} == "PPOCRv2_ocr_det" ]; then if [ ${model_name} == "PPOCRv2_ocr_det" ]; then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../ cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
fi fi
elif [ ${MODE} = "lite_train_whole_infer" ];then elif [ ${MODE} = "lite_train_whole_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
rm -rf ./train_data/ic15_data rm -rf ./train_data/ic15_data
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar --no-check-certificate
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar --no-check-certificate
cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
ln -s ./icdar2015_infer ./icdar2015 ln -s ./icdar2015_infer ./icdar2015
cd ../ cd ../
if [ ${model_name} == "PPOCRv2_ocr_det" ]; then if [ ${model_name} == "PPOCRv2_ocr_det" ]; then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../ cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
fi fi
elif [ ${MODE} = "whole_infer" ];then elif [ ${MODE} = "whole_infer" ];then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "ocr_det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_train" eval_model_name="ch_ppocr_mobile_v2.0_det_train"
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_server_det" ]; then elif [ ${model_name} = "ocr_server_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_system_mobile" ]; then elif [ ${model_name} = "ocr_system_mobile" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_system_server" ]; then elif [ ${model_name} = "ocr_system_server" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_rec" ]; then elif [ ${model_name} = "ocr_rec" ]; then
rm -rf ./train_data/ic15_data rm -rf ./train_data/ic15_data
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer" eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
elif [ ${model_name} = "ocr_server_rec" ]; then elif [ ${model_name} = "ocr_server_rec" ]; then
rm -rf ./train_data/ic15_data rm -rf ./train_data/ic15_data
eval_model_name="ch_ppocr_server_v2.0_rec_infer" eval_model_name="ch_ppocr_server_v2.0_rec_infer"
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
fi fi
elif [ ${model_name} = "PPOCRv2_ocr_det" ]; then elif [ ${model_name} = "PPOCRv2_ocr_det" ]; then
eval_model_name="ch_PP-OCRv2_det_infer" eval_model_name="ch_PP-OCRv2_det_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
if [ ${MODE} = "klquant_whole_infer" ]; then if [ ${MODE} = "klquant_whole_infer" ]; then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "ocr_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
if [ ${model_name} = "PPOCRv2_ocr_det" ]; then if [ ${model_name} = "PPOCRv2_ocr_det" ]; then
eval_model_name="ch_PP-OCRv2_det_infer" eval_model_name="ch_PP-OCRv2_det_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
fi fi
if [ ${MODE} = "cpp_infer" ];then if [ ${MODE} = "cpp_infer" ];then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "ocr_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_rec" ]; then elif [ ${model_name} = "ocr_rec" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../ cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../
elif [ ${model_name} = "ocr_system" ]; then elif [ ${model_name} = "ocr_system" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
fi fi
...@@ -179,7 +181,7 @@ if [ ${MODE} = "lite_infer" ];then ...@@ -179,7 +181,7 @@ if [ ${MODE} = "lite_infer" ];then
export https_proxy=http://172.19.57.45:3128 export https_proxy=http://172.19.57.45:3128
paddlelite_url=https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz paddlelite_url=https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz
paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}') paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}')
paddlelite_file=inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv paddlelite_file=${paddlelite_zipfile:0:66}
wget ${paddlelite_url} wget ${paddlelite_url}
tar -xf ${paddlelite_zipfile} tar -xf ${paddlelite_zipfile}
mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite
...@@ -187,7 +189,7 @@ if [ ${MODE} = "lite_infer" ];then ...@@ -187,7 +189,7 @@ if [ ${MODE} = "lite_infer" ];then
cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite
cp ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/ cp ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/
cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite
cp PTDN/configs/ppocr_det_mobile_params.txt PTDN/test_lite.sh PTDN/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite cp test_tipc/configs/ppocr_det_mobile_params.txt test_tipc/test_lite.sh test_tipc/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite
cd ${paddlelite_file}/demo/cxx/ocr/ cd ${paddlelite_file}/demo/cxx/ocr/
git clone https://github.com/LDOUBLEV/AutoLog.git git clone https://github.com/LDOUBLEV/AutoLog.git
unset http_proxy unset http_proxy
...@@ -199,3 +201,20 @@ if [ ${MODE} = "lite_infer" ];then ...@@ -199,3 +201,20 @@ if [ ${MODE} = "lite_infer" ];then
tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir} tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir}
fi fi
if [ ${MODE} = "paddle2onnx_infer" ];then
# prepare serving env
python_name=$(func_parser_value "${lines[2]}")
${python_name} -m pip install install paddle2onnx
${python_name} -m pip install onnxruntime==1.4.0
# wget model
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
# wget data
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && tar xf rec_inference.tar && cd ../
fi
...@@ -3,7 +3,7 @@ source ./common_func.sh ...@@ -3,7 +3,7 @@ source ./common_func.sh
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
FILENAME=$1 FILENAME=$1
dataline=$(awk 'NR==101, NR==110{print}' $FILENAME) dataline=$(awk 'NR==102, NR==111{print}' $FILENAME)
echo $dataline echo $dataline
# parser params # parser params
IFS=$'\n' IFS=$'\n'
......
#!/bin/bash
source test_tipc/common_func.sh
FILENAME=$1
dataline=$(cat ${FILENAME})
lines=(${dataline})
# common params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
# parser params
dataline=$(awk 'NR==111, NR==123{print}' $FILENAME)
IFS=$'\n'
lines=(${dataline})
# parser paddle2onnx
padlle2onnx_cmd=$(func_parser_value "${lines[1]}")
infer_model_dir_key=$(func_parser_key "${lines[2]}")
infer_model_dir_value=$(func_parser_value "${lines[2]}")
model_filename_key=$(func_parser_key "${lines[3]}")
model_filename_value=$(func_parser_value "${lines[3]}")
params_filename_key=$(func_parser_key "${lines[4]}")
params_filename_value=$(func_parser_value "${lines[4]}")
save_file_key=$(func_parser_key "${lines[5]}")
save_file_value=$(func_parser_value "${lines[5]}")
opset_version_key=$(func_parser_key "${lines[6]}")
opset_version_value=$(func_parser_value "${lines[6]}")
enable_onnx_checker_key=$(func_parser_key "${lines[7]}")
enable_onnx_checker_value=$(func_parser_value "${lines[7]}")
# parser onnx inference
inference_py=$(func_parser_value "${lines[8]}")
use_gpu_key=$(func_parser_key "${lines[9]}")
use_gpu_value=$(func_parser_value "${lines[9]}")
det_model_key=$(func_parser_key "${lines[10]}")
image_dir_key=$(func_parser_key "${lines[11]}")
image_dir_value=$(func_parser_value "${lines[11]}")
LOG_PATH="./test_tipc/output"
mkdir -p ./test_tipc/output
status_log="${LOG_PATH}/results_paddle2onnx.log"
function func_paddle2onnx(){
IFS='|'
_script=$1
# paddle2onnx
_save_log_path="${LOG_PATH}/paddle2onnx_infer_cpu.log"
set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_save_model=$(func_set_params "${save_file_key}" "${save_file_value}")
set_opset_version=$(func_set_params "${opset_version_key}" "${opset_version_value}")
set_enable_onnx_checker=$(func_set_params "${enable_onnx_checker_key}" "${enable_onnx_checker_value}")
trans_model_cmd="${padlle2onnx_cmd} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_save_model} ${set_opset_version} ${set_enable_onnx_checker}"
eval $trans_model_cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${trans_model_cmd}" "${status_log}"
# python inference
set_gpu=$(func_set_params "${use_gpu_key}" "${use_gpu_value}")
set_model_dir=$(func_set_params "${det_model_key}" "${save_file_value}")
set_img_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
infer_model_cmd="${python} ${inference_py} ${set_gpu} ${set_img_dir} ${set_model_dir} --use_onnx=True > ${_save_log_path} 2>&1 "
eval $infer_model_cmd
status_check $last_status "${infer_model_cmd}" "${status_log}"
}
echo "################### run test ###################"
export Count=0
IFS="|"
func_paddle2onnx
\ No newline at end of file
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
source test_tipc/common_func.sh source test_tipc/common_func.sh
FILENAME=$1 FILENAME=$1
dataline=$(awk 'NR==67, NR==83{print}' $FILENAME) dataline=$(awk 'NR==67, NR==84{print}' $FILENAME)
# parser params # parser params
IFS=$'\n' IFS=$'\n'
...@@ -35,6 +35,8 @@ web_use_trt_list=$(func_parser_value "${lines[14]}") ...@@ -35,6 +35,8 @@ web_use_trt_list=$(func_parser_value "${lines[14]}")
web_precision_key=$(func_parser_key "${lines[15]}") web_precision_key=$(func_parser_key "${lines[15]}")
web_precision_list=$(func_parser_value "${lines[15]}") web_precision_list=$(func_parser_value "${lines[15]}")
pipeline_py=$(func_parser_value "${lines[16]}") pipeline_py=$(func_parser_value "${lines[16]}")
image_dir_key=$(func_parser_key "${lines[17]}")
image_dir_value=$(func_parser_value "${lines[17]}")
LOG_PATH="../../test_tipc/output" LOG_PATH="../../test_tipc/output"
mkdir -p ./test_tipc/output mkdir -p ./test_tipc/output
...@@ -51,67 +53,98 @@ function func_serving(){ ...@@ -51,67 +53,98 @@ function func_serving(){
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}") set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}") set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}") set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}" trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval $trans_model_cmd eval $trans_model_cmd
cd ${serving_dir_value} cd ${serving_dir_value}
echo $PWD echo $PWD
unset https_proxy unset https_proxy
unset http_proxy unset http_proxy
for use_gpu in ${web_use_gpu_list[*]}; do for python in ${python[*]}; do
echo ${ues_gpu} if [ ${python} = "cpp"]; then
if [ ${use_gpu} = "null" ]; then for use_gpu in ${web_use_gpu_list[*]}; do
for use_mkldnn in ${web_use_mkldnn_list[*]}; do if [ ${use_gpu} = "null" ]; then
if [ ${use_mkldnn} = "False" ]; then web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293"
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &"
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
elif [ ${use_gpu} = "0" ]; then
for use_trt in ${web_use_trt_list[*]}; do
for precision in ${web_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
_save_log_path="${LOG_PATH}/server_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & "
eval $web_service_cmd eval $web_service_cmd
sleep 2s sleep 2s
pipeline_cmd="${python} ${pipeline_py} > ${_save_log_path} 2>&1" _save_log_path="${LOG_PATH}/server_infer_cpp_cpu_pipeline_usemkldnn_False_threads_4_batchsize_1.log"
pipeline_cmd="${python} ocr_cpp_client.py ppocr_det_mobile_2.0_client/ ppocr_rec_mobile_2.0_client/"
eval $pipeline_cmd eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}" status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done else
web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293 --gpu_id=0"
eval $web_service_cmd
sleep 2s
_save_log_path="${LOG_PATH}/server_infer_cpp_cpu_pipeline_usemkldnn_False_threads_4_batchsize_1.log"
pipeline_cmd="${python} ocr_cpp_client.py ppocr_det_mobile_2.0_client/ ppocr_rec_mobile_2.0_client/"
eval $pipeline_cmd
status_check $last_status "${pipeline_cmd}" "${status_log}"
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
fi
done done
else else
echo "Does not support hardware other than CPU and GPU Currently!" # python serving
for use_gpu in ${web_use_gpu_list[*]}; do
echo ${ues_gpu}
if [ ${use_gpu} = "null" ]; then
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ]; then
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &"
eval $web_service_cmd
sleep 2s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_${pipeline%_client*}_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
pipeline_cmd="${python} ${pipeline} ${set_image_dir} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
sleep 2s
done
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
elif [ ${use_gpu} = "0" ]; then
for use_trt in ${web_use_trt_list[*]}; do
for precision in ${web_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & "
eval $web_service_cmd
sleep 2s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_gpu_${pipeline%_client*}_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
pipeline_cmd="${python} ${pipeline} ${set_image_dir}> ${_save_log_path} 2>&1"
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
sleep 2s
done
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
fi fi
done done
} }
......
...@@ -90,7 +90,7 @@ infer_value1=$(func_parser_value "${lines[50]}") ...@@ -90,7 +90,7 @@ infer_value1=$(func_parser_value "${lines[50]}")
# parser klquant_infer # parser klquant_infer
if [ ${MODE} = "klquant_whole_infer" ]; then if [ ${MODE} = "klquant_whole_infer" ]; then
dataline=$(awk 'NR==82, NR==98{print}' $FILENAME) dataline=$(awk 'NR==85 NR==101{print}' $FILENAME)
lines=(${dataline}) lines=(${dataline})
# parser inference model # parser inference model
infer_model_dir_list=$(func_parser_value "${lines[1]}") infer_model_dir_list=$(func_parser_value "${lines[1]}")
...@@ -316,7 +316,7 @@ else ...@@ -316,7 +316,7 @@ else
elif [ ${#ips} -le 26 ];then # train with multi-gpu elif [ ${#ips} -le 26 ];then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}" cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
else # train with multi-machine else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${set_use_gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}" cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
fi fi
# run train # run train
eval "unset CUDA_VISIBLE_DEVICES" eval "unset CUDA_VISIBLE_DEVICES"
......
...@@ -47,6 +47,7 @@ class TextClassifier(object): ...@@ -47,6 +47,7 @@ class TextClassifier(object):
self.postprocess_op = build_post_process(postprocess_params) self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, _ = \ self.predictor, self.input_tensor, self.output_tensors, _ = \
utility.create_predictor(args, 'cls', logger) utility.create_predictor(args, 'cls', logger)
self.use_onnx = args.use_onnx
def resize_norm_img(self, img): def resize_norm_img(self, img):
imgC, imgH, imgW = self.cls_image_shape imgC, imgH, imgW = self.cls_image_shape
...@@ -100,10 +101,16 @@ class TextClassifier(object): ...@@ -100,10 +101,16 @@ class TextClassifier(object):
norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy() norm_img_batch = norm_img_batch.copy()
self.input_tensor.copy_from_cpu(norm_img_batch) if self.use_onnx:
self.predictor.run() input_dict = {}
prob_out = self.output_tensors[0].copy_to_cpu() input_dict[self.input_tensor.name] = norm_img_batch
self.predictor.try_shrink_memory() outputs = self.predictor.run(self.output_tensors, input_dict)
prob_out = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
self.predictor.try_shrink_memory()
cls_result = self.postprocess_op(prob_out) cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime elapse += time.time() - starttime
for rno in range(len(cls_result)): for rno in range(len(cls_result)):
......
...@@ -38,6 +38,7 @@ class TextDetector(object): ...@@ -38,6 +38,7 @@ class TextDetector(object):
def __init__(self, args): def __init__(self, args):
self.args = args self.args = args
self.det_algorithm = args.det_algorithm self.det_algorithm = args.det_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{ pre_process_list = [{
'DetResizeForTest': { 'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len, 'limit_side_len': args.det_limit_side_len,
...@@ -100,7 +101,12 @@ class TextDetector(object): ...@@ -100,7 +101,12 @@ class TextDetector(object):
else: else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm)) logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0) sys.exit(0)
if self.use_onnx:
pre_process_list[0] = {
'DetResizeForTest': {
'image_shape': [640, 640]
}
}
self.preprocess_op = create_operators(pre_process_list) self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params) self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
...@@ -198,15 +204,19 @@ class TextDetector(object): ...@@ -198,15 +204,19 @@ class TextDetector(object):
if self.args.benchmark: if self.args.benchmark:
self.autolog.times.stamp() self.autolog.times.stamp()
if self.use_onnx:
self.input_tensor.copy_from_cpu(img) input_dict = {}
self.predictor.run() input_dict[self.input_tensor.name] = img
outputs = [] outputs = self.predictor.run(self.output_tensors, input_dict)
for output_tensor in self.output_tensors: else:
output = output_tensor.copy_to_cpu() self.input_tensor.copy_from_cpu(img)
outputs.append(output) self.predictor.run()
if self.args.benchmark: outputs = []
self.autolog.times.stamp() for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.args.benchmark:
self.autolog.times.stamp()
preds = {} preds = {}
if self.det_algorithm == "EAST": if self.det_algorithm == "EAST":
......
...@@ -38,6 +38,7 @@ class TextE2E(object): ...@@ -38,6 +38,7 @@ class TextE2E(object):
def __init__(self, args): def __init__(self, args):
self.args = args self.args = args
self.e2e_algorithm = args.e2e_algorithm self.e2e_algorithm = args.e2e_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{ pre_process_list = [{
'E2EResizeForTest': {} 'E2EResizeForTest': {}
}, { }, {
...@@ -106,21 +107,31 @@ class TextE2E(object): ...@@ -106,21 +107,31 @@ class TextE2E(object):
img = img.copy() img = img.copy()
starttime = time.time() starttime = time.time()
self.input_tensor.copy_from_cpu(img) if self.use_onnx:
self.predictor.run() input_dict = {}
outputs = [] input_dict[self.input_tensor.name] = img
for output_tensor in self.output_tensors: outputs = self.predictor.run(self.output_tensors, input_dict)
output = output_tensor.copy_to_cpu() preds = {}
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
preds['f_border'] = outputs[0] preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1] preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2] preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3] preds['f_score'] = outputs[3]
else: else:
raise NotImplementedError self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
raise NotImplementedError
post_result = self.postprocess_op(preds, shape_list) post_result = self.postprocess_op(preds, shape_list)
points, strs = post_result['points'], post_result['texts'] points, strs = post_result['points'], post_result['texts']
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape) dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
......
...@@ -73,6 +73,7 @@ class TextRecognizer(object): ...@@ -73,6 +73,7 @@ class TextRecognizer(object):
self.predictor, self.input_tensor, self.output_tensors, self.config = \ self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger) utility.create_predictor(args, 'rec', logger)
self.benchmark = args.benchmark self.benchmark = args.benchmark
self.use_onnx = args.use_onnx
if args.benchmark: if args.benchmark:
import auto_log import auto_log
pid = os.getpid() pid = os.getpid()
...@@ -106,8 +107,9 @@ class TextRecognizer(object): ...@@ -106,8 +107,9 @@ class TextRecognizer(object):
return norm_img.astype(np.float32) / 128. - 1. return norm_img.astype(np.float32) / 128. - 1.
assert imgC == img.shape[2] assert imgC == img.shape[2]
max_wh_ratio = max(max_wh_ratio, imgW / imgH)
imgW = int((32 * max_wh_ratio)) imgW = int((32 * max_wh_ratio))
if self.use_onnx:
imgW = 100
h, w = img.shape[:2] h, w = img.shape[:2]
ratio = w / float(h) ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW: if math.ceil(imgH * ratio) > imgW:
...@@ -297,51 +299,72 @@ class TextRecognizer(object): ...@@ -297,51 +299,72 @@ class TextRecognizer(object):
gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list, gsrm_slf_attn_bias2_list,
] ]
input_names = self.predictor.get_input_names() if self.use_onnx:
for i in range(len(input_names)): input_dict = {}
input_tensor = self.predictor.get_input_handle(input_names[ input_dict[self.input_tensor.name] = norm_img_batch
i]) outputs = self.predictor.run(self.output_tensors,
input_tensor.copy_from_cpu(inputs[i]) input_dict)
self.predictor.run() preds = {"predict": outputs[2]}
outputs = [] else:
for output_tensor in self.output_tensors: input_names = self.predictor.get_input_names()
output = output_tensor.copy_to_cpu() for i in range(len(input_names)):
outputs.append(output) input_tensor = self.predictor.get_input_handle(
if self.benchmark: input_names[i])
self.autolog.times.stamp() input_tensor.copy_from_cpu(inputs[i])
preds = {"predict": outputs[2]} self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = {"predict": outputs[2]}
elif self.rec_algorithm == "SAR": elif self.rec_algorithm == "SAR":
valid_ratios = np.concatenate(valid_ratios) valid_ratios = np.concatenate(valid_ratios)
inputs = [ inputs = [
norm_img_batch, norm_img_batch,
valid_ratios, valid_ratios,
] ]
input_names = self.predictor.get_input_names() if self.use_onnx:
for i in range(len(input_names)): input_dict = {}
input_tensor = self.predictor.get_input_handle(input_names[ input_dict[self.input_tensor.name] = norm_img_batch
i]) outputs = self.predictor.run(self.output_tensors,
input_tensor.copy_from_cpu(inputs[i]) input_dict)
self.predictor.run() preds = outputs[0]
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
if len(outputs) != 1:
preds = outputs
else: else:
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(
input_names[i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0] preds = outputs[0]
else:
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors,
input_dict)
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
if len(outputs) != 1:
preds = outputs
else:
preds = outputs[0]
rec_result = self.postprocess_op(preds) rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)): for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno] rec_res[indices[beg_img_no + rno]] = rec_result[rno]
......
...@@ -121,6 +121,7 @@ def init_args(): ...@@ -121,6 +121,7 @@ def init_args():
parser.add_argument("--save_log_path", type=str, default="./log_output/") parser.add_argument("--save_log_path", type=str, default="./log_output/")
parser.add_argument("--show_log", type=str2bool, default=True) parser.add_argument("--show_log", type=str2bool, default=True)
parser.add_argument("--use_onnx", type=str2bool, default=False)
return parser return parser
...@@ -144,152 +145,163 @@ def create_predictor(args, mode, logger): ...@@ -144,152 +145,163 @@ def create_predictor(args, mode, logger):
if model_dir is None: if model_dir is None:
logger.info("not find {} model file path {}".format(mode, model_dir)) logger.info("not find {} model file path {}".format(mode, model_dir))
sys.exit(0) sys.exit(0)
model_file_path = model_dir + "/inference.pdmodel" if args.use_onnx:
params_file_path = model_dir + "/inference.pdiparams" import onnxruntime as ort
if not os.path.exists(model_file_path): model_file_path = model_dir
raise ValueError("not find model file path {}".format(model_file_path)) if not os.path.exists(model_file_path):
if not os.path.exists(params_file_path): raise ValueError("not find model file path {}".format(
raise ValueError("not find params file path {}".format( model_file_path))
params_file_path)) sess = ort.InferenceSession(model_file_path)
return sess, sess.get_inputs()[0], None, None
config = inference.Config(model_file_path, params_file_path)
if hasattr(args, 'precision'):
if args.precision == "fp16" and args.use_tensorrt:
precision = inference.PrecisionType.Half
elif args.precision == "int8":
precision = inference.PrecisionType.Int8
else:
precision = inference.PrecisionType.Float32
else: else:
precision = inference.PrecisionType.Float32 model_file_path = model_dir + "/inference.pdmodel"
params_file_path = model_dir + "/inference.pdiparams"
if args.use_gpu: if not os.path.exists(model_file_path):
gpu_id = get_infer_gpuid() raise ValueError("not find model file path {}".format(
if gpu_id is None: model_file_path))
raise ValueError( if not os.path.exists(params_file_path):
"Not found GPU in current device. Please check your device or set args.use_gpu as False" raise ValueError("not find params file path {}".format(
) params_file_path))
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt: config = inference.Config(model_file_path, params_file_path)
config.enable_tensorrt_engine(
precision_mode=precision, if hasattr(args, 'precision'):
max_batch_size=args.max_batch_size, if args.precision == "fp16" and args.use_tensorrt:
min_subgraph_size=args.min_subgraph_size) precision = inference.PrecisionType.Half
# skip the minmum trt subgraph elif args.precision == "int8":
if mode == "det": precision = inference.PrecisionType.Int8
min_input_shape = { else:
"x": [1, 3, 50, 50], precision = inference.PrecisionType.Float32
"conv2d_92.tmp_0": [1, 120, 20, 20],
"conv2d_91.tmp_0": [1, 24, 10, 10],
"conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
"nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
"conv2d_124.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
"elementwise_add_7": [1, 56, 2, 2],
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
}
max_input_shape = {
"x": [1, 3, 2000, 2000],
"conv2d_92.tmp_0": [1, 120, 400, 400],
"conv2d_91.tmp_0": [1, 24, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
"conv2d_124.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
"elementwise_add_7": [1, 56, 400, 400],
"nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
}
opt_input_shape = {
"x": [1, 3, 640, 640],
"conv2d_92.tmp_0": [1, 120, 160, 160],
"conv2d_91.tmp_0": [1, 24, 80, 80],
"conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
"nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
"conv2d_124.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
"elementwise_add_7": [1, 56, 40, 40],
"nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
}
min_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
}
max_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
}
opt_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
}
min_input_shape.update(min_pact_shape)
max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape)
elif mode == "rec":
min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
elif mode == "cls":
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else: else:
min_input_shape = {"x": [1, 3, 10, 10]} precision = inference.PrecisionType.Float32
max_input_shape = {"x": [1, 3, 1000, 1000]}
opt_input_shape = {"x": [1, 3, 500, 500]} if args.use_gpu:
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, gpu_id = get_infer_gpuid()
opt_input_shape) if gpu_id is None:
logger.warning(
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=precision,
max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph
if mode == "det":
min_input_shape = {
"x": [1, 3, 50, 50],
"conv2d_92.tmp_0": [1, 120, 20, 20],
"conv2d_91.tmp_0": [1, 24, 10, 10],
"conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
"nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
"conv2d_124.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
"elementwise_add_7": [1, 56, 2, 2],
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
}
max_input_shape = {
"x": [1, 3, 2000, 2000],
"conv2d_92.tmp_0": [1, 120, 400, 400],
"conv2d_91.tmp_0": [1, 24, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
"conv2d_124.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
"elementwise_add_7": [1, 56, 400, 400],
"nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
}
opt_input_shape = {
"x": [1, 3, 640, 640],
"conv2d_92.tmp_0": [1, 120, 160, 160],
"conv2d_91.tmp_0": [1, 24, 80, 80],
"conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
"nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
"conv2d_124.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
"elementwise_add_7": [1, 56, 40, 40],
"nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
}
min_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
}
max_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
}
opt_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
}
min_input_shape.update(min_pact_shape)
max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape)
elif mode == "rec":
min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
elif mode == "cls":
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else:
min_input_shape = {"x": [1, 3, 10, 10]}
max_input_shape = {"x": [1, 3, 1000, 1000]}
opt_input_shape = {"x": [1, 3, 500, 500]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
else:
config.disable_gpu()
if hasattr(args, "cpu_threads"):
config.set_cpu_math_library_num_threads(args.cpu_threads)
else: else:
# default cpu threads as 10 config.disable_gpu()
config.set_cpu_math_library_num_threads(10) if hasattr(args, "cpu_threads"):
if args.enable_mkldnn: config.set_cpu_math_library_num_threads(args.cpu_threads)
# cache 10 different shapes for mkldnn to avoid memory leak else:
config.set_mkldnn_cache_capacity(10) # default cpu threads as 10
config.enable_mkldnn() config.set_cpu_math_library_num_threads(10)
if args.precision == "fp16": if args.enable_mkldnn:
config.enable_mkldnn_bfloat16() # cache 10 different shapes for mkldnn to avoid memory leak
# enable memory optim config.set_mkldnn_cache_capacity(10)
config.enable_memory_optim() config.enable_mkldnn()
config.disable_glog_info() if args.precision == "fp16":
config.enable_mkldnn_bfloat16()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") # enable memory optim
if mode == 'table': config.enable_memory_optim()
config.delete_pass("fc_fuse_pass") # not supported for table config.disable_glog_info()
config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True) config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
if mode == 'table':
# create predictor config.delete_pass("fc_fuse_pass") # not supported for table
predictor = inference.create_predictor(config) config.switch_use_feed_fetch_ops(False)
input_names = predictor.get_input_names() config.switch_ir_optim(True)
for name in input_names:
input_tensor = predictor.get_input_handle(name) # create predictor
output_names = predictor.get_output_names() predictor = inference.create_predictor(config)
output_tensors = [] input_names = predictor.get_input_names()
for output_name in output_names: for name in input_names:
output_tensor = predictor.get_output_handle(output_name) input_tensor = predictor.get_input_handle(name)
output_tensors.append(output_tensor) output_names = predictor.get_output_names()
return predictor, input_tensor, output_tensors, config output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors, config
def get_infer_gpuid(): def get_infer_gpuid():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册