Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
c86c1740
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c86c1740
编写于
8月 09, 2022
作者:
文幕地方
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove unused code
上级
d5ea6f21
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
8 addition
and
169 deletion
+8
-169
configs/table/SLANet.yml
configs/table/SLANet.yml
+6
-3
ppstructure/table/matcher.py
ppstructure/table/matcher.py
+2
-166
未找到文件。
configs/table/SLANet.yml
浏览文件 @
c86c1740
Global
:
use_gpu
:
true
epoch_num
:
4
00
epoch_num
:
1
00
log_smooth_window
:
20
print_batch_step
:
20
save_model_dir
:
./output/SLANet
...
...
@@ -28,7 +28,10 @@ Optimizer:
beta2
:
0.999
clip_norm
:
5.0
lr
:
name
:
Piecewise
learning_rate
:
0.001
decay_epochs
:
[
40
,
50
]
values
:
[
0.001
,
0.0001
,
0.00005
]
regularizer
:
name
:
'
L2'
factor
:
0.00000
...
...
@@ -105,8 +108,8 @@ Train:
Eval
:
dataset
:
name
:
PubTabDataSet
data_dir
:
/home/zhoujun20/table/PubTabN
e/pubtabnet/val/
label_file_list
:
[
/home/zhoujun20/table/PubTabNe/pubtabnet/val_500
.jsonl
]
data_dir
:
train_data/tabl
e/pubtabnet/val/
label_file_list
:
[
train_data/table/pubtabnet/PubTabNet_2.0.0_val
.jsonl
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
...
...
ppstructure/table/matcher.py
浏览文件 @
c86c1740
...
...
@@ -40,169 +40,6 @@ def compute_iou(rec1, rec2):
return
(
intersect
/
(
sum_area
-
intersect
))
*
1.0
def
matcher_merge
(
ocr_bboxes
,
pred_bboxes
):
all_dis
=
[]
ious
=
[]
matched
=
{}
for
i
,
gt_box
in
enumerate
(
ocr_bboxes
):
distances
=
[]
for
j
,
pred_box
in
enumerate
(
pred_bboxes
):
# compute l1 distence and IOU between two boxes
distances
.
append
((
distance
(
gt_box
,
pred_box
),
1.
-
compute_iou
(
gt_box
,
pred_box
)))
sorted_distances
=
distances
.
copy
()
# select nearest cell
sorted_distances
=
sorted
(
sorted_distances
,
key
=
lambda
item
:
(
item
[
1
],
item
[
0
]))
if
distances
.
index
(
sorted_distances
[
0
])
not
in
matched
.
keys
():
matched
[
distances
.
index
(
sorted_distances
[
0
])]
=
[
i
]
else
:
matched
[
distances
.
index
(
sorted_distances
[
0
])].
append
(
i
)
return
matched
#, sum(ious) / len(ious)
def
complex_num
(
pred_bboxes
):
complex_nums
=
[]
for
bbox
in
pred_bboxes
:
distances
=
[]
temp_ious
=
[]
for
pred_bbox
in
pred_bboxes
:
if
bbox
!=
pred_bbox
:
distances
.
append
(
distance
(
bbox
,
pred_bbox
))
temp_ious
.
append
(
compute_iou
(
bbox
,
pred_bbox
))
complex_nums
.
append
(
temp_ious
[
distances
.
index
(
min
(
distances
))])
return
sum
(
complex_nums
)
/
len
(
complex_nums
)
def
get_rows
(
pred_bboxes
):
pre_bbox
=
pred_bboxes
[
0
]
res
=
[]
step
=
0
for
i
in
range
(
len
(
pred_bboxes
)):
bbox
=
pred_bboxes
[
i
]
if
bbox
[
1
]
-
pre_bbox
[
1
]
>
2
or
bbox
[
0
]
-
pre_bbox
[
0
]
<
0
:
break
else
:
res
.
append
(
bbox
)
step
+=
1
for
i
in
range
(
step
):
pred_bboxes
.
pop
(
0
)
return
res
,
pred_bboxes
def
refine_rows
(
pred_bboxes
):
# 微调整行的框,使在一条水平线上
ys_1
=
[]
ys_2
=
[]
for
box
in
pred_bboxes
:
ys_1
.
append
(
box
[
1
])
ys_2
.
append
(
box
[
3
])
min_y_1
=
sum
(
ys_1
)
/
len
(
ys_1
)
min_y_2
=
sum
(
ys_2
)
/
len
(
ys_2
)
re_boxes
=
[]
for
box
in
pred_bboxes
:
box
[
1
]
=
min_y_1
box
[
3
]
=
min_y_2
re_boxes
.
append
(
box
)
return
re_boxes
def
matcher_refine_row
(
gt_bboxes
,
pred_bboxes
):
before_refine_pred_bboxes
=
pred_bboxes
.
copy
()
pred_bboxes
=
[]
while
(
len
(
before_refine_pred_bboxes
)
!=
0
):
row_bboxes
,
before_refine_pred_bboxes
=
get_rows
(
before_refine_pred_bboxes
)
print
(
row_bboxes
)
pred_bboxes
.
extend
(
refine_rows
(
row_bboxes
))
all_dis
=
[]
ious
=
[]
matched
=
{}
for
i
,
gt_box
in
enumerate
(
gt_bboxes
):
distances
=
[]
#temp_ious = []
for
j
,
pred_box
in
enumerate
(
pred_bboxes
):
distances
.
append
(
distance
(
gt_box
,
pred_box
))
#temp_ious.append(compute_iou(gt_box, pred_box))
#all_dis.append(min(distances))
#ious.append(temp_ious[distances.index(min(distances))])
if
distances
.
index
(
min
(
distances
))
not
in
matched
.
keys
():
matched
[
distances
.
index
(
min
(
distances
))]
=
[
i
]
else
:
matched
[
distances
.
index
(
min
(
distances
))].
append
(
i
)
return
matched
#, sum(ious) / len(ious)
#先挑选出一行,再进行匹配
def
matcher_structure_1
(
gt_bboxes
,
pred_bboxes_rows
,
pred_bboxes
):
gt_box_index
=
0
delete_gt_bboxes
=
gt_bboxes
.
copy
()
match_bboxes_ready
=
[]
matched
=
{}
while
(
len
(
delete_gt_bboxes
)
!=
0
):
row_bboxes
,
delete_gt_bboxes
=
get_rows
(
delete_gt_bboxes
)
row_bboxes
=
sorted
(
row_bboxes
,
key
=
lambda
key
:
key
[
0
])
if
len
(
pred_bboxes_rows
)
>
0
:
match_bboxes_ready
.
extend
(
pred_bboxes_rows
.
pop
(
0
))
print
(
row_bboxes
)
for
i
,
gt_box
in
enumerate
(
row_bboxes
):
#print(gt_box)
pred_distances
=
[]
distances
=
[]
for
pred_bbox
in
pred_bboxes
:
pred_distances
.
append
(
distance
(
gt_box
,
pred_bbox
))
for
j
,
pred_box
in
enumerate
(
match_bboxes_ready
):
distances
.
append
(
distance
(
gt_box
,
pred_box
))
index
=
pred_distances
.
index
(
min
(
distances
))
#print('index', index)
if
index
not
in
matched
.
keys
():
matched
[
index
]
=
[
gt_box_index
]
else
:
matched
[
index
].
append
(
gt_box_index
)
gt_box_index
+=
1
return
matched
def
matcher_structure
(
gt_bboxes
,
pred_bboxes_rows
,
pred_bboxes
):
'''
gt_bboxes: 排序后
pred_bboxes:
'''
pre_bbox
=
gt_bboxes
[
0
]
matched
=
{}
match_bboxes_ready
=
[]
match_bboxes_ready
.
extend
(
pred_bboxes_rows
.
pop
(
0
))
for
i
,
gt_box
in
enumerate
(
gt_bboxes
):
pred_distances
=
[]
for
pred_bbox
in
pred_bboxes
:
pred_distances
.
append
(
distance
(
gt_box
,
pred_bbox
))
distances
=
[]
gap_pre
=
gt_box
[
1
]
-
pre_bbox
[
1
]
gap_pre_1
=
gt_box
[
0
]
-
pre_bbox
[
2
]
#print(gap_pre, len(pred_bboxes_rows))
if
(
gap_pre_1
<
0
and
len
(
pred_bboxes_rows
)
>
0
):
match_bboxes_ready
.
extend
(
pred_bboxes_rows
.
pop
(
0
))
if
len
(
pred_bboxes_rows
)
==
1
:
match_bboxes_ready
.
extend
(
pred_bboxes_rows
.
pop
(
0
))
if
len
(
match_bboxes_ready
)
==
0
and
len
(
pred_bboxes_rows
)
>
0
:
match_bboxes_ready
.
extend
(
pred_bboxes_rows
.
pop
(
0
))
if
len
(
match_bboxes_ready
)
==
0
and
len
(
pred_bboxes_rows
)
==
0
:
break
#print(match_bboxes_ready)
for
j
,
pred_box
in
enumerate
(
match_bboxes_ready
):
distances
.
append
(
distance
(
gt_box
,
pred_box
))
index
=
pred_distances
.
index
(
min
(
distances
))
#print(gt_box, index)
#match_bboxes_ready.pop(distances.index(min(distances)))
print
(
gt_box
,
match_bboxes_ready
[
distances
.
index
(
min
(
distances
))])
if
index
not
in
matched
.
keys
():
matched
[
index
]
=
[
i
]
else
:
matched
[
index
].
append
(
i
)
pre_bbox
=
gt_box
return
matched
class
TableMatch
:
def
__init__
(
self
,
filter_ocr_result
=
False
,
use_master
=
False
):
self
.
filter_ocr_result
=
filter_ocr_result
...
...
@@ -225,14 +62,13 @@ class TableMatch:
def
match_result
(
self
,
dt_boxes
,
pred_bboxes
):
matched
=
{}
for
i
,
gt_box
in
enumerate
(
dt_boxes
):
# gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
distances
=
[]
for
j
,
pred_box
in
enumerate
(
pred_bboxes
):
distances
.
append
((
distance
(
gt_box
,
pred_box
),
1.
-
compute_iou
(
gt_box
,
pred_box
)
))
#
获取两两cell之间的L1距离和 1- IOU
))
#
compute iou and l1 distance
sorted_distances
=
distances
.
copy
()
#
根据距离和IOU挑选最"近"的cell
#
select det box by iou and l1 distance
sorted_distances
=
sorted
(
sorted_distances
,
key
=
lambda
item
:
(
item
[
1
],
item
[
0
]))
if
distances
.
index
(
sorted_distances
[
0
])
not
in
matched
.
keys
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录