> [ABINet: Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition](https://openaccess.thecvf.com/content/CVPR2021/papers/Fang_Read_Like_Humans_Autonomous_Bidirectional_and_Iterative_Language_Modeling_for_CVPR_2021_paper.pdf)
> Shancheng Fang and Hongtao Xie and Yuxin Wang and Zhendong Mao and Yongdong Zhang
@@ -66,6 +66,7 @@ Supported text recognition algorithms (Click the link to get the tutorial):
-[x] [SEED](./algorithm_rec_seed_en.md)
-[x] [SVTR](./algorithm_rec_svtr_en.md)
-[x] [ViTSTR](./algorithm_rec_vitstr_en.md)
-[x] [ABINet](./algorithm_rec_abinet_en.md)
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
...
...
@@ -85,6 +86,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
-[3. Model Training / Evaluation / Prediction](#3)
-[3.1 Training](#3-1)
-[3.2 Evaluation](#3-2)
-[3.3 Prediction](#3-3)
-[4. Inference and Deployment](#4)
-[4.1 Python Inference](#4-1)
-[4.2 C++ Inference](#4-2)
-[4.3 Serving](#4-3)
-[4.4 More](#4-4)
-[5. FAQ](#5)
<aname="1"></a>
## 1. Introduction
Paper:
> [ABINet: Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition](https://openaccess.thecvf.com/content/CVPR2021/papers/Fang_Read_Like_Humans_Autonomous_Bidirectional_and_Iterative_Language_Modeling_for_CVPR_2021_paper.pdf)
> Shancheng Fang and Hongtao Xie and Yuxin Wang and Zhendong Mao and Yongdong Zhang
> CVPR, 2021
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
First, the model saved during the ABINet text recognition training process is converted into an inference model. ( [Model download link]())), you can use the following command to convert:
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to ABINet in the `tools/export_model.py` file.
After the conversion is successful, there are three files in the directory:
```
/inference/rec_r45_abinet/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
For ABINet text recognition model inference, the following commands can be executed:
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901)
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9465042352676392)
```
<aname="4-2"></a>
...
...
@@ -121,12 +122,146 @@ Not supported
1. In the `NRTR` paper, Beam search is used to decode characters, but the speed is slow. Beam search is not used by default here, and greedy search is used to decode characters.
<aname="6"></a>
## 6. Release Note
1. The release/2.6 version updates the NRTR code structure. The new version of NRTR can load the model parameters of the old version (release/2.5 and before), and you may use the following code to convert the old version model parameters to the new version model parameters:
```python
params=paddle.load('path/'+'.pdparams')# the old version parameters
state_dict=model.state_dict()# the new version model parameters