提交 c269e1e4 编写于 作者: T Topdu

modify vitstr name

上级 bc5522b6
...@@ -49,7 +49,7 @@ Architecture: ...@@ -49,7 +49,7 @@ Architecture:
Loss: Loss:
name: CESmoothingLoss name: CELoss
smoothing: True smoothing: True
PostProcess: PostProcess:
......
...@@ -3,7 +3,7 @@ Global: ...@@ -3,7 +3,7 @@ Global:
epoch_num: 20 epoch_num: 20
log_smooth_window: 20 log_smooth_window: 20
print_batch_step: 10 print_batch_step: 10
save_model_dir: ./output/rec/vitstr/ save_model_dir: ./output/rec/vitstr_none_ce/
save_epoch_step: 1 save_epoch_step: 1
# evaluation is run every 2000 iterations after the 0th iteration# # evaluation is run every 2000 iterations after the 0th iteration#
eval_batch_step: [0, 50] eval_batch_step: [0, 50]
...@@ -44,7 +44,7 @@ Architecture: ...@@ -44,7 +44,7 @@ Architecture:
name: CTCHead name: CTCHead
Loss: Loss:
name: CESmoothingLoss name: CELoss
smoothing: False smoothing: False
with_all: True with_all: True
......
...@@ -85,7 +85,7 @@ ...@@ -85,7 +85,7 @@
|SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) | |SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) | |SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) | |SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) | |ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce_en | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) |
<a name="2"></a> <a name="2"></a>
......
...@@ -27,7 +27,7 @@ ...@@ -27,7 +27,7 @@
|模型|骨干网络|配置文件|Acc|下载链接| |模型|骨干网络|配置文件|Acc|下载链接|
| --- | --- | --- | --- | --- | | --- | --- | --- | --- | --- |
|ViTSTR|ViTSTR|[rec_vitstr.yml](../../configs/rec/rec_vitstr.yml)|79.82%|[训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar)| |ViTSTR|ViTSTR|[rec_vitstr_none_ce.yml](../../configs/rec/rec_vitstr_none_ce.yml)|79.82%|[训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar)|
<a name="2"></a> <a name="2"></a>
## 2. 环境配置 ## 2. 环境配置
...@@ -40,7 +40,7 @@ ...@@ -40,7 +40,7 @@
<a name="3-1"></a> <a name="3-1"></a>
### 3.1 模型训练 ### 3.1 模型训练
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`ViTSTR`识别模型时需要**更换配置文件**`ViTSTR`[配置文件](../../configs/rec/rec_ViTSTR.yml) 请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`ViTSTR`识别模型时需要**更换配置文件**`ViTSTR`[配置文件](../../configs/rec/rec_vitstr_none_ce.yml)
#### 启动训练 #### 启动训练
...@@ -48,10 +48,10 @@ ...@@ -48,10 +48,10 @@
具体地,在完成数据准备后,便可以启动训练,训练命令如下: 具体地,在完成数据准备后,便可以启动训练,训练命令如下:
```shell ```shell
#单卡训练(训练周期长,不建议) #单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_vitstr.yml python3 tools/train.py -c configs/rec/rec_vitstr_none_ce.yml
#多卡训练,通过--gpus参数指定卡号 #多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vitstr.yml python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vitstr_none_ce.yml
``` ```
<a name="3-2"></a> <a name="3-2"></a>
...@@ -61,7 +61,7 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs ...@@ -61,7 +61,7 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs
```shell ```shell
# 注意将pretrained_model的路径设置为本地路径。 # 注意将pretrained_model的路径设置为本地路径。
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vitstr.yml -o Global.pretrained_model=./rec_vitstr_train/best_accuracy python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy
``` ```
<a name="3-3"></a> <a name="3-3"></a>
...@@ -70,7 +70,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec ...@@ -70,7 +70,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
使用如下命令进行单张图片预测: 使用如下命令进行单张图片预测:
```shell ```shell
# 注意将pretrained_model的路径设置为本地路径。 # 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c configs/rec/rec_vitstr.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_vitstr_train/best_accuracy python3 tools/infer_rec.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。 # 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。
``` ```
...@@ -80,15 +80,15 @@ python3 tools/infer_rec.py -c configs/rec/rec_vitstr.yml -o Global.infer_img='./ ...@@ -80,15 +80,15 @@ python3 tools/infer_rec.py -c configs/rec/rec_vitstr.yml -o Global.infer_img='./
<a name="4-1"></a> <a name="4-1"></a>
### 4.1 Python推理 ### 4.1 Python推理
首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) ),可以使用如下命令进行转换: 首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) ),可以使用如下命令进行转换:
```shell ```shell
# 注意将pretrained_model的路径设置为本地路径。 # 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/rec_vitstr.yml -o Global.pretrained_model=./rec_vitstr_train/best_accuracy Global.save_inference_dir=./inference/rec_vitstr/ python3 tools/export_model.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy Global.save_inference_dir=./inference/rec_vitstr/
``` ```
**注意:** **注意:**
- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。 - 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
- 如果您修改了训练时的输入大小,请修改`tools/export_model.py`文件中的对应NRTR的`infer_shape` - 如果您修改了训练时的输入大小,请修改`tools/export_model.py`文件中的对应ViTSTR的`infer_shape`
转换成功后,在目录下有三个文件: 转换成功后,在目录下有三个文件:
``` ```
...@@ -110,20 +110,20 @@ python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' ...@@ -110,20 +110,20 @@ python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png'
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下: 执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
结果如下: 结果如下:
```shell ```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901) Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9998350143432617)
``` ```
**注意** **注意**
- 训练上述模型采用的图像分辨率是[1,224,224],需要通过参数`rec_image_shape`设置为您训练时的识别图像形状。 - 训练上述模型采用的图像分辨率是[1,224,224],需要通过参数`rec_image_shape`设置为您训练时的识别图像形状。
- 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。 - 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。
- 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`NRTR的预处理为您的预处理方法。 - 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`ViTSTR的预处理为您的预处理方法。
<a name="4-2"></a> <a name="4-2"></a>
### 4.2 C++推理部署 ### 4.2 C++推理部署
由于C++预处理后处理还未支持NRTR,所以暂未支持 由于C++预处理后处理还未支持ViTSTR,所以暂未支持
<a name="4-3"></a> <a name="4-3"></a>
### 4.3 Serving服务化部署 ### 4.3 Serving服务化部署
...@@ -139,7 +139,7 @@ Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901) ...@@ -139,7 +139,7 @@ Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901)
## 5. FAQ ## 5. FAQ
1.`ViTSTR`论文中,使用在ImageNet1k上的预训练权重进行初始化训练,我们在训练未采用预训练权重,最终精度没有变化甚至有所提高。 1.`ViTSTR`论文中,使用在ImageNet1k上的预训练权重进行初始化训练,我们在训练未采用预训练权重,最终精度没有变化甚至有所提高。
2. 我们仅仅复现了`ViTSTR`中的tiny版本,如果有需要使用small、base版本,可直接使用源开源repo中的预训练权重转为Paddle权重即可使用。 2. 我们仅仅复现了`ViTSTR`中的tiny版本,如果需要使用small、base版本,可将[ViTSTR源repo](https://github.com/roatienza/deep-text-recognition-benchmark) 中的预训练权重转为Paddle权重使用。
## 引用 ## 引用
......
...@@ -84,7 +84,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r ...@@ -84,7 +84,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|SAR|Resnet31| 87.20% | rec_r31_sar | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) | |SAR|Resnet31| 87.20% | rec_r31_sar | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) | |SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) | |SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) | |ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce_en | [trained model](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) |
<a name="2"></a> <a name="2"></a>
......
...@@ -25,7 +25,7 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval ...@@ -25,7 +25,7 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval
|Model|Backbone|config|Acc|Download link| |Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- | | --- | --- | --- | --- | --- |
|ViTSTR|ViTSTR|[rec_vitstr.yml](../../configs/rec/rec_vitstr.yml)|79.82%|[训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar)| |ViTSTR|ViTSTR|[rec_vitstr_none_ce.yml](../../configs/rec/rec_vitstr_none_ce.yml)|79.82%|[训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar)|
<a name="2"></a> <a name="2"></a>
## 2. Environment ## 2. Environment
...@@ -43,24 +43,24 @@ Specifically, after the data preparation is completed, the training can be start ...@@ -43,24 +43,24 @@ Specifically, after the data preparation is completed, the training can be start
``` ```
#Single GPU training (long training period, not recommended) #Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_vitstr.yml python3 tools/train.py -c configs/rec/rec_vitstr_none_ce.yml
#Multi GPU training, specify the gpu number through the --gpus parameter #Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vitstr.yml python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vitstr_none_ce.yml
``` ```
Evaluation: Evaluation:
``` ```
# GPU evaluation # GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vitstr.yml -o Global.pretrained_model={path/to/weights}/best_accuracy python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
``` ```
Prediction: Prediction:
``` ```
# The configuration file used for prediction must match the training # The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_vitstr.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_vitstr_train/best_accuracy python3 tools/infer_rec.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy
``` ```
<a name="4"></a> <a name="4"></a>
...@@ -71,7 +71,7 @@ python3 tools/infer_rec.py -c configs/rec/rec_vitstr.yml -o Global.infer_img='./ ...@@ -71,7 +71,7 @@ python3 tools/infer_rec.py -c configs/rec/rec_vitstr.yml -o Global.infer_img='./
First, the model saved during the ViTSTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar)) ), you can use the following command to convert: First, the model saved during the ViTSTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar)) ), you can use the following command to convert:
``` ```
python3 tools/export_model.py -c configs/rec/rec_vitstr.yml -o Global.pretrained_model=./rec_vitstr_train/best_accuracy Global.save_inference_dir=./inference/rec_vitstr python3 tools/export_model.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy Global.save_inference_dir=./inference/rec_vitstr
``` ```
**Note:** **Note:**
...@@ -98,7 +98,7 @@ python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' ...@@ -98,7 +98,7 @@ python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png'
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows: After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows: The result is as follows:
```shell ```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901) Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9998350143432617)
``` ```
<a name="4-2"></a> <a name="4-2"></a>
......
...@@ -30,7 +30,7 @@ from .det_fce_loss import FCELoss ...@@ -30,7 +30,7 @@ from .det_fce_loss import FCELoss
from .rec_ctc_loss import CTCLoss from .rec_ctc_loss import CTCLoss
from .rec_att_loss import AttentionLoss from .rec_att_loss import AttentionLoss
from .rec_srn_loss import SRNLoss from .rec_srn_loss import SRNLoss
from .rec_ce_smooth_loss import CESmoothingLoss from .rec_ce_loss import CELoss
from .rec_sar_loss import SARLoss from .rec_sar_loss import SARLoss
from .rec_aster_loss import AsterLoss from .rec_aster_loss import AsterLoss
from .rec_pren_loss import PRENLoss from .rec_pren_loss import PRENLoss
...@@ -60,9 +60,8 @@ def build_loss(config): ...@@ -60,9 +60,8 @@ def build_loss(config):
support_dict = [ support_dict = [
'DBLoss', 'PSELoss', 'EASTLoss', 'SASTLoss', 'FCELoss', 'CTCLoss', 'DBLoss', 'PSELoss', 'EASTLoss', 'SASTLoss', 'FCELoss', 'CTCLoss',
'ClsLoss', 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss', 'ClsLoss', 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss',
'CESmoothingLoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss',
'SDMGRLoss', 'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss'
'MultiLoss'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)
module_name = config.pop('name') module_name = config.pop('name')
......
...@@ -3,9 +3,9 @@ from paddle import nn ...@@ -3,9 +3,9 @@ from paddle import nn
import paddle.nn.functional as F import paddle.nn.functional as F
class CESmoothingLoss(nn.Layer): class CELoss(nn.Layer):
def __init__(self, smoothing=True, with_all=False, **kwargs): def __init__(self, smoothing=True, with_all=False, **kwargs):
super(CESmoothingLoss, self).__init__() super(CELoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss(reduction='mean', ignore_index=0) self.loss_func = nn.CrossEntropyLoss(reduction='mean', ignore_index=0)
self.smoothing = smoothing self.smoothing = smoothing
self.with_all = with_all self.with_all = with_all
......
...@@ -49,7 +49,7 @@ Architecture: ...@@ -49,7 +49,7 @@ Architecture:
Loss: Loss:
name: CESmoothingLoss name: CELoss
smoothing: True smoothing: True
PostProcess: PostProcess:
......
...@@ -40,10 +40,10 @@ infer_quant:False ...@@ -40,10 +40,10 @@ infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR" inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR"
--use_gpu:True|False --use_gpu:True|False
--enable_mkldnn:True|False --enable_mkldnn:True|False
--cpu_threads:1|6 --cpu_threads:6
--rec_batch_num:1|6 --rec_batch_num:1|6
--use_tensorrt:True|False --use_tensorrt:True|False
--precision:fp32|int8 --precision:fp32
--rec_model_dir: --rec_model_dir:
--image_dir:./inference/rec_inference --image_dir:./inference/rec_inference
--save_log_path:./test/output/ --save_log_path:./test/output/
......
...@@ -3,7 +3,7 @@ Global: ...@@ -3,7 +3,7 @@ Global:
epoch_num: 20 epoch_num: 20
log_smooth_window: 20 log_smooth_window: 20
print_batch_step: 10 print_batch_step: 10
save_model_dir: ./output/rec/vitstr/ save_model_dir: ./output/rec/vitstr_none_ce/
save_epoch_step: 1 save_epoch_step: 1
# evaluation is run every 2000 iterations after the 0th iteration# # evaluation is run every 2000 iterations after the 0th iteration#
eval_batch_step: [0, 2000] eval_batch_step: [0, 2000]
...@@ -43,7 +43,7 @@ Architecture: ...@@ -43,7 +43,7 @@ Architecture:
name: CTCHead name: CTCHead
Loss: Loss:
name: CESmoothingLoss name: CELoss
smoothing: False smoothing: False
with_all: True with_all: True
......
...@@ -13,7 +13,7 @@ train_infer_img_dir:./inference/rec_inference ...@@ -13,7 +13,7 @@ train_infer_img_dir:./inference/rec_inference
null:null null:null
## ##
trainer:norm_train trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_vitstr/rec_vitstr.yml -o norm_train:tools/train.py -c test_tipc/configs/rec_vitstr_none_ce/rec_vitstr_none_ce.yml -o
pact_train:null pact_train:null
fpgm_train:null fpgm_train:null
distill_train:null distill_train:null
...@@ -21,21 +21,21 @@ null:null ...@@ -21,21 +21,21 @@ null:null
null:null null:null
## ##
===========================eval_params=========================== ===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_vitstr/rec_vitstr.yml -o eval:tools/eval.py -c test_tipc/configs/rec_vitstr_none_ce/rec_vitstr_none_ce.yml -o
null:null null:null
## ##
===========================infer_params=========================== ===========================infer_params===========================
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.checkpoints: Global.checkpoints:
norm_export:tools/export_model.py -c test_tipc/configs/rec_vitstr/rec_vitstr.yml -o norm_export:tools/export_model.py -c test_tipc/configs/rec_vitstr_none_ce/rec_vitstr_none_ce.yml -o
quant_export:null quant_export:null
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
export1:null export1:null
export2:null export2:null
## ##
train_model:./inference/rec_vitstr_train/best_accuracy train_model:./inference/rec_vitstr_none_ce_train/best_accuracy
infer_export:tools/export_model.py -c test_tipc/configs/rec_vitstr/rec_vitstr.yml -o infer_export:tools/export_model.py -c test_tipc/configs/rec_vitstr_none_ce/rec_vitstr_none_ce.yml -o
infer_quant:False infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,224,224" --rec_algorithm="ViTSTR" inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,224,224" --rec_algorithm="ViTSTR"
--use_gpu:True|False --use_gpu:True|False
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册