Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
a411c825
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a411c825
编写于
7月 06, 2021
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add sum loss
上级
80561b15
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
153 addition
and
8 deletion
+153
-8
ppocr/losses/distillation_loss.py
ppocr/losses/distillation_loss.py
+153
-8
未找到文件。
ppocr/losses/distillation_loss.py
浏览文件 @
a411c825
...
...
@@ -18,19 +18,60 @@ import paddle.nn as nn
from
.rec_ctc_loss
import
CTCLoss
from
.basic_loss
import
DMLLoss
from
.basic_loss
import
DistanceLoss
from
.det_db_loss
import
DBLoss
from
.det_basic_loss
import
BalanceLoss
,
MaskL1Loss
,
DiceLoss
class
DistillationDMLLoss
(
DMLLoss
):
def
_sum_loss
(
loss_dict
):
if
"loss"
in
loss_dict
.
keys
():
return
loss_dict
else
:
loss_dict
[
"loss"
]
=
0.
for
k
,
value
in
loss_dict
.
items
():
if
k
==
"loss"
:
continue
else
:
loss_dict
[
"loss"
]
+=
value
return
loss_dict
# class DistillationDMLLoss(DMLLoss):
"""
"""
def
__init__
(
self
,
model_name_pairs
=
[],
act
=
None
,
key
=
None
,
def
__init__
(
self
,
model_name_pairs
=
[],
act
=
None
,
key
=
None
,
maps_name
=
None
,
name
=
"loss_dml"
):
super
().
__init__
(
act
=
act
)
assert
isinstance
(
model_name_pairs
,
list
)
self
.
key
=
key
self
.
model_name_pairs
=
model_name_pairs
self
.
name
=
name
self
.
maps_name
=
self
.
maps_name
def
_check_maps_name
(
self
,
maps_name
):
if
maps_name
is
None
:
return
None
elif
type
(
maps_name
)
==
str
:
return
[
maps_name
]
elif
type
(
maps_name
)
==
list
:
return
[
maps_name
]
else
:
return
None
def
_slice_out
(
self
,
outs
):
new_outs
=
{}
for
k
in
self
.
maps_name
:
if
k
==
"thrink_maps"
:
new_outs
[
k
]
=
paddle
.
slice
(
outs
,
axes
=
1
,
starts
=
0
,
ends
=
1
)
elif
k
==
"threshold_maps"
:
new_outs
[
k
]
=
paddle
.
slice
(
outs
,
axes
=
1
,
starts
=
1
,
ends
=
2
)
elif
k
==
"binary_maps"
:
new_outs
[
k
]
=
paddle
.
slice
(
outs
,
axes
=
1
,
starts
=
2
,
ends
=
3
)
else
:
continue
def
forward
(
self
,
predicts
,
batch
):
loss_dict
=
dict
()
...
...
@@ -40,13 +81,30 @@ class DistillationDMLLoss(DMLLoss):
if
self
.
key
is
not
None
:
out1
=
out1
[
self
.
key
]
out2
=
out2
[
self
.
key
]
loss
=
super
().
forward
(
out1
,
out2
)
if
isinstance
(
loss
,
dict
):
for
key
in
loss
:
loss_dict
[
"{}_{}_{}_{}"
.
format
(
key
,
pair
[
0
],
pair
[
1
],
idx
)]
=
loss
[
key
]
if
self
.
maps_name
is
None
:
loss
=
super
().
forward
(
out1
,
out2
)
if
isinstance
(
loss
,
dict
):
for
key
in
loss
:
loss_dict
[
"{}_{}_{}_{}"
.
format
(
key
,
pair
[
0
],
pair
[
1
],
idx
)]
=
loss
[
key
]
else
:
loss_dict
[
"{}_{}"
.
format
(
self
.
name
,
idx
)]
=
loss
else
:
loss_dict
[
"{}_{}"
.
format
(
self
.
name
,
idx
)]
=
loss
outs1
=
self
.
_slice_out
(
out1
)
outs2
=
self
.
_slice_out
(
out2
)
for
k
in
outs1
.
keys
():
loss
=
super
().
forward
(
outs1
[
k
],
outs2
[
k
])
if
isinstance
(
loss
,
dict
):
for
key
in
loss
:
loss_dict
[
"{}_{}_{}_{}_{}"
.
format
(
key
,
pair
[
0
],
pair
[
1
],
map_name
,
idx
)]
=
loss
[
key
]
else
:
loss_dict
[
"{}_{}_{}"
.
format
(
self
.
name
,
map_name
,
idx
)]
=
loss
loss_dict
=
_sum_loss
(
loss_dict
)
return
loss_dict
...
...
@@ -73,6 +131,93 @@ class DistillationCTCLoss(CTCLoss):
return
loss_dict
"""
class DistillationDBLoss(DBLoss):
def __init__(self,
model_name_list=[],
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="db_loss",
**kwargs):
super().__init__()
self.model_name_list = model_name_list
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss.keys():
if key == "loss":
continue
loss_dict[f"{self.name}_{model_name}_{key}"] = loss[key]
else:
loss_dict[f"{self.name}_{model_name}"] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDilaDBLoss(DBLoss):
def __init__(self, model_name_pairs=[],
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="dila_dbloss"):
super().__init__()
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
stu_outs = predicts[pair[0]]
tch_outs = predicts[pair[1]]
if self.key is not None:
stu_preds = stu_outs[self.key]
tch_preds = tch_outs[self.key]
stu_shrink_maps = stu_preds[:, 0, :, :]
stu_binary_maps = stu_preds[:, 2, :, :]
# dilation to teacher prediction
dilation_w = np.array([[1,1], [1,1]])
th_shrink_maps = tch_preds[:, 0, :, :]
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
for i in range(th_shrink_maps.shape[0]):
dilate_maps[i] = cv2.dilate(th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
th_shrink_maps = paddle.to_tensor(dilate_maps)
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[1:]
# calculate the shrink map loss
bce_loss = self.alpha * self.bce_loss(stu_shrink_maps, th_shrink_maps,
label_shrink_mask)
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
label_shrink_mask)
k = f"{self.name}_{pair[0]}_{pair[1]}"
loss_dict[k] = bce_loss + loss_binary_maps
loss_dict = _sum_loss(loss_dict)
return loss
"""
class
DistillationDistanceLoss
(
DistanceLoss
):
"""
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录