提交 885ec436 编写于 作者: 文幕地方's avatar 文幕地方

update doc

上级 8e4f8f69
...@@ -17,8 +17,8 @@ ...@@ -17,8 +17,8 @@
- [4.2.3 CCPD车牌数据集fine-tune](#423-ccpd车牌数据集fine-tune) - [4.2.3 CCPD车牌数据集fine-tune](#423-ccpd车牌数据集fine-tune)
- [4.2.4 CCPD车牌数据集fine-tune+量化训练](#424-ccpd车牌数据集fine-tune量化训练) - [4.2.4 CCPD车牌数据集fine-tune+量化训练](#424-ccpd车牌数据集fine-tune量化训练)
- [4.2.5 模型导出](#425-模型导出) - [4.2.5 模型导出](#425-模型导出)
- [4.3 部署](#43-部署) - [4.3 计算End2End指标](#43-计算End2End指标)
- [4.4 计算End2End指标](#44-计算End2End指标) - [4.4 部署](#44-部署)
- [4.5 实验总结](#45-实验总结) - [4.5 实验总结](#45-实验总结)
## 1. 项目介绍 ## 1. 项目介绍
...@@ -598,28 +598,7 @@ python deploy/slim/quantization/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OC ...@@ -598,28 +598,7 @@ python deploy/slim/quantization/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OC
Global.save_inference_dir=output/CCPD/rec_quant/infer Global.save_inference_dir=output/CCPD/rec_quant/infer
``` ```
### 4.3 部署 ### 4.3 计算End2End指标
- 基于 Paddle Inference 的python推理
检测模型和识别模型分别 fine-tune 并导出为inference模型之后,可以使用如下命令基于 Paddle Inference 进行端到端推理并对结果进行可视化。
```bash
python tools/infer/predict_system.py \
--det_model_dir=output/CCPD/det/infer/ \
--rec_model_dir=output/CCPD/rec/infer/ \
--image_dir="/home/aistudio/data/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" \
--rec_image_shape=3,48,320
```
推理结果如下
![](https://ai-studio-static-online.cdn.bcebos.com/76b6a0939c2c4cf49039b6563c4b28e241e11285d7464e799e81c58c0f7707a7)
- 端侧部署
端侧部署我们采用基于 PaddleLite 的 cpp 推理。Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。具体可参考 [PaddleOCR lite教程](../dygraph/deploy/lite/readme_ch.md)
### 4.4 计算End2End指标
端到端指标可通过 [PaddleOCR内置脚本](../tools/end2end/readme.md) 进行计算,具体步骤如下: 端到端指标可通过 [PaddleOCR内置脚本](../tools/end2end/readme.md) 进行计算,具体步骤如下:
...@@ -762,6 +741,28 @@ fmeasure: 87.36% ...@@ -762,6 +741,28 @@ fmeasure: 87.36%
从结果中可以看到对预训练模型不做修改,只根据场景下的具体情况进行后处理的修改就能大幅提升端到端指标到76.84%,在CCPD数据集上进行 fine-tune 后指标进一步提升到86.55%, 在经过量化训练之后,由于检测模型的recall变高,指标进一步提升到87.36%。 从结果中可以看到对预训练模型不做修改,只根据场景下的具体情况进行后处理的修改就能大幅提升端到端指标到76.84%,在CCPD数据集上进行 fine-tune 后指标进一步提升到86.55%, 在经过量化训练之后,由于检测模型的recall变高,指标进一步提升到87.36%。
### 4.4 部署
- 基于 Paddle Inference 的python推理
检测模型和识别模型分别 fine-tune 并导出为inference模型之后,可以使用如下命令基于 Paddle Inference 进行端到端推理并对结果进行可视化。
```bash
python tools/infer/predict_system.py \
--det_model_dir=output/CCPD/det/infer/ \
--rec_model_dir=output/CCPD/rec/infer/ \
--image_dir="/home/aistudio/data/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" \
--rec_image_shape=3,48,320
```
推理结果如下
![](https://ai-studio-static-online.cdn.bcebos.com/76b6a0939c2c4cf49039b6563c4b28e241e11285d7464e799e81c58c0f7707a7)
- 端侧部署
端侧部署我们采用基于 PaddleLite 的 cpp 推理。Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。具体可参考 [PaddleOCR lite教程](../dygraph/deploy/lite/readme_ch.md)
### 4.5 实验总结 ### 4.5 实验总结
我们分别使用PP-OCRv3中英文超轻量预训练模型在车牌数据集上进行了直接评估和 fine-tune 和 fine-tune+量化3种方案的实验,并基于[PaddleOCR lite教程](../dygraph/deploy/lite/readme_ch.md)进行了速度测试,指标对比如下: 我们分别使用PP-OCRv3中英文超轻量预训练模型在车牌数据集上进行了直接评估和 fine-tune 和 fine-tune+量化3种方案的实验,并基于[PaddleOCR lite教程](../dygraph/deploy/lite/readme_ch.md)进行了速度测试,指标对比如下:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册