提交 6ad9f47f 编写于 作者: L LDOUBLEV

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into test_v11

...@@ -71,6 +71,8 @@ pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添 ...@@ -71,6 +71,8 @@ pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添
PPOCRLabel --lang ch # 启动 PPOCRLabel --lang ch # 启动
``` ```
> 如果上述安装出现问题,可以参考3.6节 错误提示
#### 1.2.2 本地构建whl包并安装 #### 1.2.2 本地构建whl包并安装
```bash ```bash
......
...@@ -704,8 +704,9 @@ class Canvas(QWidget): ...@@ -704,8 +704,9 @@ class Canvas(QWidget):
def keyPressEvent(self, ev): def keyPressEvent(self, ev):
key = ev.key() key = ev.key()
shapesBackup = []
shapesBackup = copy.deepcopy(self.shapes) shapesBackup = copy.deepcopy(self.shapes)
if len(shapesBackup) == 0:
return
self.shapesBackups.pop() self.shapesBackups.pop()
self.shapesBackups.append(shapesBackup) self.shapesBackups.append(shapesBackup)
if key == Qt.Key_Escape and self.current: if key == Qt.Key_Escape and self.current:
......
...@@ -18,6 +18,7 @@ Global: ...@@ -18,6 +18,7 @@ Global:
Architecture: Architecture:
name: DistillationModel name: DistillationModel
algorithm: Distillation algorithm: Distillation
model_type: det
Models: Models:
Teacher: Teacher:
freeze_params: true freeze_params: true
......
...@@ -111,7 +111,7 @@ def main(): ...@@ -111,7 +111,7 @@ def main():
valid_dataloader = build_dataloader(config, 'Eval', device, logger) valid_dataloader = build_dataloader(config, 'Eval', device, logger)
use_srn = config['Architecture']['algorithm'] == "SRN" use_srn = config['Architecture']['algorithm'] == "SRN"
model_type = config['Architecture']['model_type'] model_type = config['Architecture'].get('model_type', None)
# start eval # start eval
metric = program.eval(model, valid_dataloader, post_process_class, metric = program.eval(model, valid_dataloader, post_process_class,
eval_class, model_type, use_srn) eval_class, model_type, use_srn)
...@@ -120,8 +120,7 @@ def main(): ...@@ -120,8 +120,7 @@ def main():
for k, v in metric.items(): for k, v in metric.items():
logger.info('{}:{}'.format(k, v)) logger.info('{}:{}'.format(k, v))
infer_shape = [3, 32, 100] if config['Architecture'][ infer_shape = [3, 32, 100] if model_type == "rec" else [3, 640, 640]
'model_type'] != "det" else [3, 640, 640]
save_path = config["Global"]["save_inference_dir"] save_path = config["Global"]["save_inference_dir"]
......
...@@ -139,7 +139,7 @@ PaddleOCR欢迎大家向repo中积极贡献代码,下面给出一些贡献代 ...@@ -139,7 +139,7 @@ PaddleOCR欢迎大家向repo中积极贡献代码,下面给出一些贡献代
- 在PaddleOCR的 [GitHub首页](https://github.com/PaddlePaddle/PaddleOCR),点击左上角 `Fork` 按钮,在你的个人目录下创建 `远程仓库`,比如`https://github.com/{your_name}/PaddleOCR` - 在PaddleOCR的 [GitHub首页](https://github.com/PaddlePaddle/PaddleOCR),点击左上角 `Fork` 按钮,在你的个人目录下创建 `远程仓库`,比如`https://github.com/{your_name}/PaddleOCR`
![banner](/Users/zhulingfeng01/OCR/PaddleOCR/doc/banner.png) ![banner](../banner.png)
-`远程仓库` Clone到本地 -`远程仓库` Clone到本地
...@@ -230,7 +230,7 @@ pre-commit ...@@ -230,7 +230,7 @@ pre-commit
重复上述步骤,直到pre-comit格式检查不报错。如下所示。 重复上述步骤,直到pre-comit格式检查不报错。如下所示。
[![img](https://github.com/PaddlePaddle/PaddleClas/raw/release/2.3/docs/images/quick_start/community/003_precommit_pass.png)](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/images/quick_start/community/003_precommit_pass.png) ![img](../precommit_pass.png)
使用下面的命令完成提交。 使用下面的命令完成提交。
...@@ -258,7 +258,7 @@ git push origin new_branch ...@@ -258,7 +258,7 @@ git push origin new_branch
点击new pull request,选择本地分支和目标分支,如下图所示。在PR的描述说明中,填写该PR所完成的功能。接下来等待review,如果有需要修改的地方,参照上述步骤更新 origin 中的对应分支即可。 点击new pull request,选择本地分支和目标分支,如下图所示。在PR的描述说明中,填写该PR所完成的功能。接下来等待review,如果有需要修改的地方,参照上述步骤更新 origin 中的对应分支即可。
![banner](/Users/zhulingfeng01/OCR/PaddleOCR/doc/pr.png) ![banner](../pr.png)
#### 3.2.8 签署CLA协议和通过单元测试 #### 3.2.8 签署CLA协议和通过单元测试
......
...@@ -49,7 +49,6 @@ https://aistudio.baidu.com/aistudio/datasetdetail/8429 ...@@ -49,7 +49,6 @@ https://aistudio.baidu.com/aistudio/datasetdetail/8429
- 每个样本固定10个字符,字符随机截取自语料库中的句子 - 每个样本固定10个字符,字符随机截取自语料库中的句子
- 图片分辨率统一为280x32 - 图片分辨率统一为280x32
![](../datasets/ch_doc1.jpg) ![](../datasets/ch_doc1.jpg)
![](../datasets/ch_doc2.jpg)
![](../datasets/ch_doc3.jpg) ![](../datasets/ch_doc3.jpg)
- **下载地址**:https://pan.baidu.com/s/1QkI7kjah8SPHwOQ40rS1Pw (密码:lu7m) - **下载地址**:https://pan.baidu.com/s/1QkI7kjah8SPHwOQ40rS1Pw (密码:lu7m)
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
```shell ```shell
python3 -m paddle.distributed.launch \ python3 -m paddle.distributed.launch \
--log_dir=./log/ \ --log_dir=./log/ \
--gpus '0,1,2,3,4,5,6,7' \ --gpus "0,1,2,3,4,5,6,7" \
tools/train.py \ tools/train.py \
-c configs/rec/rec_mv3_none_bilstm_ctc.yml -c configs/rec/rec_mv3_none_bilstm_ctc.yml
``` ```
......
# OCR模型列表(V2.1,2021年9月6日更新) # PP-OCR系列模型列表(V2.1,2021年9月6日更新)
> **说明** > **说明**
> 1. 2.1版模型相比2.0版模型,2.1的模型在模型精度上做了提升 > 1. 2.1版模型相比2.0版模型,2.1的模型在模型精度上做了提升
......
...@@ -12,30 +12,37 @@ PaddleOCR希望可以通过AI的力量助力任何一位有梦想的开发者实 ...@@ -12,30 +12,37 @@ PaddleOCR希望可以通过AI的力量助力任何一位有梦想的开发者实
## 1. 社区贡献 ## 1. 社区贡献
### 1.1 为PaddleOCR新增功能 ### 1.1 基于PaddleOCR的社区贡献
- 【最新】 [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel):完整的C#版本标注工具 (@ [包建强](https://gitee.com/BaoJianQiang) )
#### 1.1.1 通用工具
- [DangoOCR离线版](https://github.com/PantsuDango/DangoOCR):通用型桌面级即时翻译工具 (@ [PantsuDango](https://github.com/PantsuDango))
- [scr2txt](https://github.com/lstwzd/scr2txt):截屏转文字工具 (@ [lstwzd](https://github.com/lstwzd))
- [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/1054614?channelType=0&channel=0):英文视频自动生成字幕( @ [叶月水狐](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/322052))
#### 1.1.2 垂类场景工具
- [id_card_ocr](https://github.com/baseli/id_card_ocr):身份证复印件识别(@ [baseli](https://github.com/baseli))
- [Paddle_Table_Image_Reader](https://github.com/thunder95/Paddle_Table_Image_Reader):能看懂表格图片的数据助手(@ [thunder95](https://github.com/thunder95]))
#### 1.1.3 前后处理
- [paddleOCRCorrectOutputs](https://github.com/yuranusduke/paddleOCRCorrectOutputs):获取OCR识别结果的key-value(@ [yuranusduke](https://github.com/yuranusduke))
### 1.2 为PaddleOCR新增功能
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android([#340](https://github.com/PaddlePaddle/PaddleOCR/pull/340))和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码([#325](https://github.com/PaddlePaddle/PaddleOCR/pull/325)) - 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android([#340](https://github.com/PaddlePaddle/PaddleOCR/pull/340))和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码([#325](https://github.com/PaddlePaddle/PaddleOCR/pull/325))
- 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务([#507](https://github.com/PaddlePaddle/PaddleOCR/pull/507))。 - 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务([#507](https://github.com/PaddlePaddle/PaddleOCR/pull/507))。
- 非常感谢 [lijinhan](https://github.com/lijinhan) 给PaddleOCR增加java SpringBoot 调用OCR Hubserving接口完成对OCR服务化部署的使用([#1027](https://github.com/PaddlePaddle/PaddleOCR/pull/1027))。 - 非常感谢 [lijinhan](https://github.com/lijinhan) 给PaddleOCR增加java SpringBoot 调用OCR Hubserving接口完成对OCR服务化部署的使用([#1027](https://github.com/PaddlePaddle/PaddleOCR/pull/1027))。
- 非常感谢 [Evezerest](https://github.com/Evezerest)[ninetailskim](https://github.com/ninetailskim)[edencfc](https://github.com/edencfc)[BeyondYourself](https://github.com/BeyondYourself)[1084667371](https://github.com/1084667371) 贡献了[PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/PPOCRLabel/README_ch.md) 的完整代码。 - 非常感谢 [Evezerest](https://github.com/Evezerest)[ninetailskim](https://github.com/ninetailskim)[edencfc](https://github.com/edencfc)[BeyondYourself](https://github.com/BeyondYourself)[1084667371](https://github.com/1084667371) 贡献了[PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/PPOCRLabel/README_ch.md) 的完整代码。
### 1.2 基于PaddleOCR的社区贡献
- 【最新】完整的C#版本标注工具 [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel) (@ [包建强](https://gitee.com/BaoJianQiang) )
- 通用型桌面级即时翻译工具 [DangoOCR离线版](https://github.com/PantsuDango/DangoOCR) (@ [PantsuDango](https://github.com/PantsuDango))
- 获取OCR识别结果的key-value [paddleOCRCorrectOutputs](https://github.com/yuranusduke/paddleOCRCorrectOutputs) (@ [yuranusduke](https://github.com/yuranusduke))
- 截屏转文字工具 [scr2txt](https://github.com/lstwzd/scr2txt) (@ [lstwzd](https://github.com/lstwzd))
- 身份证复印件识别 [id_card_ocr](https://github.com/baseli/id_card_ocr)(@ [baseli](https://github.com/baseli))
- 能看懂表格图片的数据助手:[Paddle_Table_Image_Reader](https://github.com/thunder95/Paddle_Table_Image_Reader) (@ [thunder95][https://github.com/thunder95])
- 英文视频自动生成字幕 [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/1054614?channelType=0&channel=0)( @ [叶月水狐](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/322052))
### 1.3 代码与文档优化 ### 1.3 代码与文档优化
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题([#210](https://github.com/PaddlePaddle/PaddleOCR/pull/210))。 - 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题([#210](https://github.com/PaddlePaddle/PaddleOCR/pull/210))。
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码([#304](https://github.com/PaddlePaddle/PaddleOCR/pull/304))。 - 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码([#304](https://github.com/PaddlePaddle/PaddleOCR/pull/304))。
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格([so many commits)](https://github.com/PaddlePaddle/PaddleOCR/commits?author=BeyondYourself) - 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格([so many commits)](https://github.com/PaddlePaddle/PaddleOCR/commits?author=BeyondYourself)
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck)[Karl Horky](https://github.com/karlhorky) 贡献修改英文文档。 - 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck)[Karl Horky](https://github.com/karlhorky) 贡献修改英文文档。
### 1.4 多语言语料 ### 1.4 多语言语料
......
...@@ -50,7 +50,6 @@ https://aistudio.baidu.com/aistudio/datasetdetail/8429 ...@@ -50,7 +50,6 @@ https://aistudio.baidu.com/aistudio/datasetdetail/8429
- Each sample is fixed with 10 characters, and the characters are randomly intercepted from the sentences in the corpus - Each sample is fixed with 10 characters, and the characters are randomly intercepted from the sentences in the corpus
- Image resolution is 280x32 - Image resolution is 280x32
![](../datasets/ch_doc1.jpg) ![](../datasets/ch_doc1.jpg)
![](../datasets/ch_doc2.jpg)
![](../datasets/ch_doc3.jpg) ![](../datasets/ch_doc3.jpg)
- **Download link**:https://pan.baidu.com/s/1QkI7kjah8SPHwOQ40rS1Pw (Password: lu7m) - **Download link**:https://pan.baidu.com/s/1QkI7kjah8SPHwOQ40rS1Pw (Password: lu7m)
......
...@@ -13,7 +13,7 @@ Take recognition as an example. After the data is prepared locally, start the tr ...@@ -13,7 +13,7 @@ Take recognition as an example. After the data is prepared locally, start the tr
```shell ```shell
python3 -m paddle.distributed.launch \ python3 -m paddle.distributed.launch \
--log_dir=./log/ \ --log_dir=./log/ \
--gpus '0,1,2,3,4,5,6,7' \ --gpus "0,1,2,3,4,5,6,7" \
tools/train.py \ tools/train.py \
-c configs/rec/rec_mv3_none_bilstm_ctc.yml -c configs/rec/rec_mv3_none_bilstm_ctc.yml
``` ```
......
doc/joinus.PNG

192.6 KB | W: | H:

doc/joinus.PNG

185.9 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
...@@ -32,6 +32,7 @@ class CopyPaste(object): ...@@ -32,6 +32,7 @@ class CopyPaste(object):
self.aug = IaaAugment(augmenter_args) self.aug = IaaAugment(augmenter_args)
def __call__(self, data): def __call__(self, data):
point_num = data['polys'].shape[1]
src_img = data['image'] src_img = data['image']
src_polys = data['polys'].tolist() src_polys = data['polys'].tolist()
src_ignores = data['ignore_tags'].tolist() src_ignores = data['ignore_tags'].tolist()
...@@ -57,6 +58,9 @@ class CopyPaste(object): ...@@ -57,6 +58,9 @@ class CopyPaste(object):
src_img, box = self.paste_img(src_img, box_img, src_polys) src_img, box = self.paste_img(src_img, box_img, src_polys)
if box is not None: if box is not None:
box = box.tolist()
for _ in range(len(box), point_num):
box.append(box[-1])
src_polys.append(box) src_polys.append(box)
src_ignores.append(tag) src_ignores.append(tag)
src_img = cv2.cvtColor(np.array(src_img), cv2.COLOR_RGB2BGR) src_img = cv2.cvtColor(np.array(src_img), cv2.COLOR_RGB2BGR)
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
import numpy as np import numpy as np
import os import os
import random import random
import traceback
from paddle.io import Dataset from paddle.io import Dataset
from .imaug import transform, create_operators from .imaug import transform, create_operators
...@@ -93,7 +94,8 @@ class SimpleDataSet(Dataset): ...@@ -93,7 +94,8 @@ class SimpleDataSet(Dataset):
img = f.read() img = f.read()
data['image'] = img data['image'] = img
data = transform(data, load_data_ops) data = transform(data, load_data_ops)
if data is None:
if data is None or data['polys'].shape[1]!=4:
continue continue
ext_data.append(data) ext_data.append(data)
return ext_data return ext_data
...@@ -115,10 +117,10 @@ class SimpleDataSet(Dataset): ...@@ -115,10 +117,10 @@ class SimpleDataSet(Dataset):
data['image'] = img data['image'] = img
data['ext_data'] = self.get_ext_data() data['ext_data'] = self.get_ext_data()
outs = transform(data, self.ops) outs = transform(data, self.ops)
except Exception as e: except:
self.logger.error( self.logger.error(
"When parsing line {}, error happened with msg: {}".format( "When parsing line {}, error happened with msg: {}".format(
data_line, e)) data_line, traceback.format_exc()))
outs = None outs = None
if outs is None: if outs is None:
# during evaluation, we should fix the idx to get same results for many times of evaluation. # during evaluation, we should fix the idx to get same results for many times of evaluation.
......
...@@ -25,16 +25,14 @@ __all__ = ["ResNet"] ...@@ -25,16 +25,14 @@ __all__ = ["ResNet"]
class ConvBNLayer(nn.Layer): class ConvBNLayer(nn.Layer):
def __init__( def __init__(self,
self, in_channels,
in_channels, out_channels,
out_channels, kernel_size,
kernel_size, stride=1,
stride=1, groups=1,
groups=1, is_vd_mode=False,
is_vd_mode=False, act=None):
act=None,
name=None, ):
super(ConvBNLayer, self).__init__() super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode self.is_vd_mode = is_vd_mode
...@@ -47,19 +45,8 @@ class ConvBNLayer(nn.Layer): ...@@ -47,19 +45,8 @@ class ConvBNLayer(nn.Layer):
stride=stride, stride=stride,
padding=(kernel_size - 1) // 2, padding=(kernel_size - 1) // 2,
groups=groups, groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False) bias_attr=False)
if name == "conv1": self._batch_norm = nn.BatchNorm(out_channels, act=act)
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs): def forward(self, inputs):
if self.is_vd_mode: if self.is_vd_mode:
...@@ -75,29 +62,25 @@ class BottleneckBlock(nn.Layer): ...@@ -75,29 +62,25 @@ class BottleneckBlock(nn.Layer):
out_channels, out_channels,
stride, stride,
shortcut=True, shortcut=True,
if_first=False, if_first=False):
name=None):
super(BottleneckBlock, self).__init__() super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer( self.conv0 = ConvBNLayer(
in_channels=in_channels, in_channels=in_channels,
out_channels=out_channels, out_channels=out_channels,
kernel_size=1, kernel_size=1,
act='relu', act='relu')
name=name + "_branch2a")
self.conv1 = ConvBNLayer( self.conv1 = ConvBNLayer(
in_channels=out_channels, in_channels=out_channels,
out_channels=out_channels, out_channels=out_channels,
kernel_size=3, kernel_size=3,
stride=stride, stride=stride,
act='relu', act='relu')
name=name + "_branch2b")
self.conv2 = ConvBNLayer( self.conv2 = ConvBNLayer(
in_channels=out_channels, in_channels=out_channels,
out_channels=out_channels * 4, out_channels=out_channels * 4,
kernel_size=1, kernel_size=1,
act=None, act=None)
name=name + "_branch2c")
if not shortcut: if not shortcut:
self.short = ConvBNLayer( self.short = ConvBNLayer(
...@@ -105,8 +88,7 @@ class BottleneckBlock(nn.Layer): ...@@ -105,8 +88,7 @@ class BottleneckBlock(nn.Layer):
out_channels=out_channels * 4, out_channels=out_channels * 4,
kernel_size=1, kernel_size=1,
stride=1, stride=1,
is_vd_mode=False if if_first else True, is_vd_mode=False if if_first else True)
name=name + "_branch1")
self.shortcut = shortcut self.shortcut = shortcut
...@@ -125,13 +107,13 @@ class BottleneckBlock(nn.Layer): ...@@ -125,13 +107,13 @@ class BottleneckBlock(nn.Layer):
class BasicBlock(nn.Layer): class BasicBlock(nn.Layer):
def __init__(self, def __init__(
in_channels, self,
out_channels, in_channels,
stride, out_channels,
shortcut=True, stride,
if_first=False, shortcut=True,
name=None): if_first=False, ):
super(BasicBlock, self).__init__() super(BasicBlock, self).__init__()
self.stride = stride self.stride = stride
self.conv0 = ConvBNLayer( self.conv0 = ConvBNLayer(
...@@ -139,14 +121,12 @@ class BasicBlock(nn.Layer): ...@@ -139,14 +121,12 @@ class BasicBlock(nn.Layer):
out_channels=out_channels, out_channels=out_channels,
kernel_size=3, kernel_size=3,
stride=stride, stride=stride,
act='relu', act='relu')
name=name + "_branch2a")
self.conv1 = ConvBNLayer( self.conv1 = ConvBNLayer(
in_channels=out_channels, in_channels=out_channels,
out_channels=out_channels, out_channels=out_channels,
kernel_size=3, kernel_size=3,
act=None, act=None)
name=name + "_branch2b")
if not shortcut: if not shortcut:
self.short = ConvBNLayer( self.short = ConvBNLayer(
...@@ -154,8 +134,7 @@ class BasicBlock(nn.Layer): ...@@ -154,8 +134,7 @@ class BasicBlock(nn.Layer):
out_channels=out_channels, out_channels=out_channels,
kernel_size=1, kernel_size=1,
stride=1, stride=1,
is_vd_mode=False if if_first else True, is_vd_mode=False if if_first else True)
name=name + "_branch1")
self.shortcut = shortcut self.shortcut = shortcut
...@@ -201,22 +180,19 @@ class ResNet(nn.Layer): ...@@ -201,22 +180,19 @@ class ResNet(nn.Layer):
out_channels=32, out_channels=32,
kernel_size=3, kernel_size=3,
stride=2, stride=2,
act='relu', act='relu')
name="conv1_1")
self.conv1_2 = ConvBNLayer( self.conv1_2 = ConvBNLayer(
in_channels=32, in_channels=32,
out_channels=32, out_channels=32,
kernel_size=3, kernel_size=3,
stride=1, stride=1,
act='relu', act='relu')
name="conv1_2")
self.conv1_3 = ConvBNLayer( self.conv1_3 = ConvBNLayer(
in_channels=32, in_channels=32,
out_channels=64, out_channels=64,
kernel_size=3, kernel_size=3,
stride=1, stride=1,
act='relu', act='relu')
name="conv1_3")
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.stages = [] self.stages = []
...@@ -226,13 +202,6 @@ class ResNet(nn.Layer): ...@@ -226,13 +202,6 @@ class ResNet(nn.Layer):
block_list = [] block_list = []
shortcut = False shortcut = False
for i in range(depth[block]): for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer( bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i), 'bb_%d_%d' % (block, i),
BottleneckBlock( BottleneckBlock(
...@@ -241,8 +210,7 @@ class ResNet(nn.Layer): ...@@ -241,8 +210,7 @@ class ResNet(nn.Layer):
out_channels=num_filters[block], out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1, stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut, shortcut=shortcut,
if_first=block == i == 0, if_first=block == i == 0))
name=conv_name))
shortcut = True shortcut = True
block_list.append(bottleneck_block) block_list.append(bottleneck_block)
self.out_channels.append(num_filters[block] * 4) self.out_channels.append(num_filters[block] * 4)
...@@ -252,7 +220,6 @@ class ResNet(nn.Layer): ...@@ -252,7 +220,6 @@ class ResNet(nn.Layer):
block_list = [] block_list = []
shortcut = False shortcut = False
for i in range(depth[block]): for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer( basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i), 'bb_%d_%d' % (block, i),
BasicBlock( BasicBlock(
...@@ -261,8 +228,7 @@ class ResNet(nn.Layer): ...@@ -261,8 +228,7 @@ class ResNet(nn.Layer):
out_channels=num_filters[block], out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1, stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut, shortcut=shortcut,
if_first=block == i == 0, if_first=block == i == 0))
name=conv_name))
shortcut = True shortcut = True
block_list.append(basic_block) block_list.append(basic_block)
self.out_channels.append(num_filters[block]) self.out_channels.append(num_filters[block])
......
...@@ -153,7 +153,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_in ...@@ -153,7 +153,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_in
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
``` ```
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel and figure area will be cropped and saved, the excel and image file name will be the coordinates of the table in the image. After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel and figure area will be cropped and saved, the excel and image file name will be the coordinates of the table in the image.
......
[English](README.md) | 简体中文 [English](README.md) | 简体中文
# PP-Structure ## 简介
PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包,旨在帮助开发者更好的完成文档理解相关任务。
## 近期更新
* 2021.12.07 新增VQA任务-SER和RE。
## 特性
PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包,主要特性如下: PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包,主要特性如下:
- 支持对图片形式的文档进行版面分析,可以划分**文字、标题、表格、图片以及列表**5类区域(与Layout-Parser联合使用) - 支持对图片形式的文档进行版面分析,可以划分**文字、标题、表格、图片以及列表**5类区域(与Layout-Parser联合使用)
...@@ -8,181 +14,88 @@ PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包 ...@@ -8,181 +14,88 @@ PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包
- 支持表格区域进行结构化分析,最终结果输出Excel文件 - 支持表格区域进行结构化分析,最终结果输出Excel文件
- 支持python whl包和命令行两种方式,简单易用 - 支持python whl包和命令行两种方式,简单易用
- 支持版面分析和表格结构化两类任务自定义训练 - 支持版面分析和表格结构化两类任务自定义训练
- 支持文档视觉问答(Document Visual Question Answering,DOC-VQA)任务-语义实体识别(Semantic Entity Recognition,SER)和关系抽取(Relation Extraction,RE)
## 1. 效果展示
<img src="../doc/table/ppstructure.GIF" width="100%"/>
## 2. 安装
### 2.1 安装依赖
- **(1) 安装PaddlePaddle**
```bash
pip3 install --upgrade pip
# GPU安装
python3 -m pip install paddlepaddle-gpu==2.1.1 -i https://mirror.baidu.com/pypi/simple
# CPU安装
python3 -m pip install paddlepaddle==2.1.1 -i https://mirror.baidu.com/pypi/simple
```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
- **(2) 安装 Layout-Parser**
```bash
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
### 2.2 安装PaddleOCR(包含PP-OCR和PP-Structure)
- **(1) PIP快速安装PaddleOCR whl包(仅预测)**
```bash ## 1. 效果展示
pip install "paddleocr>=2.2" # 推荐使用2.2+版本
```
- **(2) 完整克隆PaddleOCR源码(预测+训练)**
```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR
#如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR
#注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```
## 3. PP-Structure 快速开始
### 3.1 命令行使用(默认参数,极简)
```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
```
### 3.2 Python脚本使用(自定义参数,灵活)
```python ### 1.1 版面分析和表格识别
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True) <img src="../doc/table/ppstructure.GIF" width="100%"/>
save_folder = './output/table' ### 1.2 VQA
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result: * SER
line.pop('img')
print(line)
from PIL import Image ![](./vqa/images/result_ser/zh_val_0_ser.jpg) | ![](./vqa/images/result_ser/zh_val_42_ser.jpg)
---|---
font_path = '../doc/fonts/simfang.ttf' # PaddleOCR下提供字体包 图中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
### 3.3 返回结果说明 * 深紫色:HEADER
PP-Structure的返回结果为一个dict组成的list,示例如下 * 浅紫色:QUESTION
* 军绿色:ANSWER
```shell 在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
dict 里各个字段说明如下
| 字段 | 说明 | * RE
| --------------- | -------------|
|type|图片区域的类型|
|bbox|图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]|
|res|图片区域的OCR或表格识别结果。<br> 表格: 表格的HTML字符串; <br> OCR: 一个包含各个单行文字的检测坐标和识别结果的元组|
![](./vqa/images/result_re/zh_val_21_re.jpg) | ![](./vqa/images/result_re/zh_val_40_re.jpg)
---|---
### 3.4 参数说明
| 字段 | 说明 | 默认值 | 图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
| --------------- | ---------------------------------------- | ------------------------------------------- |
| output | excel和识别结果保存的地址 | ./output/table |
| table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址 | None |
| table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.tx |
大部分参数和paddleocr whl包保持一致,见 [whl包文档](../doc/doc_ch/whl.md) ## 2. 快速体验
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。 代码体验:从 [快速安装](./docs/quickstart.md) 开始
## 3. PP-Structure Pipeline介绍
## 4. PP-Structure Pipeline介绍 ### 3.1 版面分析+表格识别
![pipeline](../doc/table/pipeline.jpg) ![pipeline](../doc/table/pipeline.jpg)
在PP-Structure中,图片会先经由Layout-Parser进行版面分析,在版面分析中,会对图片里的区域进行分类,包括**文字、标题、图片、列表和表格**5类。对于前4类区域,直接使用PP-OCR完成对应区域文字检测与识别。对于表格类区域,经过表格结构化处理后,表格图片转换为相同表格样式的Excel文件。 在PP-Structure中,图片会先经由Layout-Parser进行版面分析,在版面分析中,会对图片里的区域进行分类,包括**文字、标题、图片、列表和表格**5类。对于前4类区域,直接使用PP-OCR完成对应区域文字检测与识别。对于表格类区域,经过表格结构化处理后,表格图片转换为相同表格样式的Excel文件。
### 4.1 版面分析 #### 3.1.1 版面分析
版面分析对文档数据进行区域分类,其中包括版面分析工具的Python脚本使用、提取指定类别检测框、性能指标以及自定义训练版面分析模型,详细内容可以参考[文档](layout/README_ch.md) 版面分析对文档数据进行区域分类,其中包括版面分析工具的Python脚本使用、提取指定类别检测框、性能指标以及自定义训练版面分析模型,详细内容可以参考[文档](layout/README_ch.md)
### 4.2 表格识别 #### 3.1.2 表格识别
表格识别将表格图片转换为excel文档,其中包含对于表格文本的检测和识别以及对于表格结构和单元格坐标的预测,详细说明参考[文档](table/README_ch.md) 表格识别将表格图片转换为excel文档,其中包含对于表格文本的检测和识别以及对于表格结构和单元格坐标的预测,详细说明参考[文档](table/README_ch.md)
## 5. 预测引擎推理(与whl包效果相同)
使用如下命令即可完成预测引擎的推理 ### 3.2 VQA
```python coming soon
cd ppstructure
# 下载模型 ## 4. 模型库
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# 下载超轻量级英文表格英寸模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf PP-Structure系列模型列表(更新中)
```
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
**Model List** * LayoutParser 模型
LayoutParser 模型
|模型名称|模型简介|下载地址| |模型名称|模型简介|下载地址|
| --- | --- | --- | | --- | --- | --- |
| ppyolov2_r50vd_dcn_365e_publaynet | PubLayNet 数据集训练的版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | [PubLayNet](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) | | ppyolov2_r50vd_dcn_365e_publaynet | PubLayNet 数据集训练的版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | [PubLayNet](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) |
| ppyolov2_r50vd_dcn_365e_tableBank_word | TableBank Word 数据集训练的版面分析模型,只能检测表格 | [TableBank Word](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) |
| ppyolov2_r50vd_dcn_365e_tableBank_latex | TableBank Latex 数据集训练的版面分析模型,只能检测表格 | [TableBank Latex](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) |
OCR和表格识别模型
|模型名称|模型简介|推理模型大小|下载地址| * OCR和表格识别模型
|模型名称|模型简介|模型大小|下载地址|
| --- | --- | --- | --- | | --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) | |ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) | |ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) | |en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
如需要使用其他模型,可以在 [model_list](../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到`det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。 * VQA模型
|模型名称|模型简介|模型大小|下载地址|
| --- | --- | --- | --- |
|PP-Layout_v1.0_ser_pretrained|基于LayoutXLM在xfun中文数据集上训练的SER模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar) |
|PP-Layout_v1.0_re_pretrained|基于LayoutXLM在xfun中文数据集上训练的RE模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar) |
更多模型下载,可以参考 [模型库](./docs/model_list.md)
# 快速安装
## 1. PaddlePaddle 和 PaddleOCR
可参考[PaddleOCR安装文档](../../doc/doc_ch/installation.md)
## 2. 安装其他依赖
### 2.1 版面分析所需 Layout-Parser
Layout-Parser 可通过如下命令安装
```bash
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
### 2.2 VQA所需依赖
* paddleocr
```bash
pip3 install paddleocr
```
* PaddleNLP
```bash
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
pip3 install -e .
```
# Model List
## 1. LayoutParser 模型
|模型名称|模型简介|下载地址|
| --- | --- | --- |
| ppyolov2_r50vd_dcn_365e_publaynet | PubLayNet 数据集训练的版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | [PubLayNet](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) |
| ppyolov2_r50vd_dcn_365e_tableBank_word | TableBank Word 数据集训练的版面分析模型,只能检测表格 | [TableBank Word](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) |
| ppyolov2_r50vd_dcn_365e_tableBank_latex | TableBank Latex 数据集训练的版面分析模型,只能检测表格 | [TableBank Latex](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) |
## 2. OCR和表格识别模型
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
如需要使用其他OCR模型,可以在 [model_list](../../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到`det_model_dir`,`rec_model_dir`两个字段即可。
## 3. VQA模型
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
|PP-Layout_v1.0_ser_pretrained|基于LayoutXLM在xfun中文数据集上训练的SER模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar) |
|PP-Layout_v1.0_re_pretrained|基于LayoutXLM在xfun中文数据集上训练的RE模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar) |
# PP-Structure 快速开始
* [1. 安装PaddleOCR whl包](#1)
* [2. 便捷使用](#2)
+ [2.1 命令行使用](#21)
+ [2.2 Python脚本使用](#22)
+ [2.3 返回结果说明](#23)
+ [2.4 参数说明](#24)
* [3. Python脚本使用](#3)
<a name="1"></a>
## 1. 安装依赖包
```bash
pip install "paddleocr>=2.3.0.2" # 推荐使用2.3.0.2+版本
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
# 安装 PaddleNLP
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
pip3 install -e .
```
<a name="2"></a>
## 2. 便捷使用
<a name="21"></a>
### 2.1 命令行使用
* 版面分析+表格识别
```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
```
* VQA
coming soon
<a name="22"></a>
### 2.2 Python脚本使用
* 版面分析+表格识别
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output/table'
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = '../doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
* VQA
comming soon
<a name="23"></a>
### 2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下
* 版面分析+表格识别
```shell
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
dict 里各个字段说明如下
| 字段 | 说明 |
| --------------- | -------------|
|type|图片区域的类型|
|bbox|图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]|
|res|图片区域的OCR或表格识别结果。<br> 表格: 表格的HTML字符串; <br> OCR: 一个包含各个单行文字的检测坐标和识别结果的元组|
* VQA
comming soon
<a name="24"></a>
### 2.4 参数说明
| 字段 | 说明 | 默认值 |
| --------------- | ---------------------------------------- | ------------------------------------------- |
| output | excel和识别结果保存的地址 | ./output/table |
| table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址 | None |
| table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
| model_name_or_path | VQA SER模型地址 | None |
| max_seq_length | VQA SER模型最大支持token长度 | 512 |
| label_map_path | VQA SER 标签文件地址 | ./vqa/labels/labels_ser.txt |
| mode | pipeline预测模式,structure: 版面分析+表格识别; vqa: ser文档信息抽取 | structure |
大部分参数和paddleocr whl包保持一致,见 [whl包文档](../doc/doc_ch/whl.md)
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
<a name="3"></a>
## 3. Python脚本使用
* 版面分析+表格识别
```bash
cd ppstructure
# 下载模型
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# 下载超轻量级英文表格英寸模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \
--image_dir=../doc/table/1.png \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \
--output=../output/table \
--vis_font_path=../doc/fonts/simfang.ttf
```
运行完成后,每张图片会在`output`字段指定的目录下的`talbe`目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
* VQA
```bash
cd ppstructure
# 下载模型
mkdir inference && cd inference
# 下载SER xfun 模型并解压
wget https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar && tar xf PP-Layout_v1.0_ser_pretrained.tar
cd ..
python3 predict_system.py --model_name_or_path=vqa/PP-Layout_v1.0_ser_pretrained/ \
--mode=vqa \
--image_dir=vqa/images/input/zh_val_0.jpg \
--vis_font_path=../doc/fonts/simfang.ttf
```
运行完成后,每张图片会在`output`字段指定的目录下的`vqa`目录下存放可视化之后的图片,图片名和输入图片名一致。
...@@ -30,6 +30,7 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif ...@@ -30,6 +30,7 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
from tools.infer.predict_system import TextSystem from tools.infer.predict_system import TextSystem
from ppstructure.table.predict_table import TableSystem, to_excel from ppstructure.table.predict_table import TableSystem, to_excel
from ppstructure.vqa.infer_ser_e2e import SerPredictor, draw_ser_results
from ppstructure.utility import parse_args, draw_structure_result from ppstructure.utility import parse_args, draw_structure_result
logger = get_logger() logger = get_logger()
...@@ -37,53 +38,75 @@ logger = get_logger() ...@@ -37,53 +38,75 @@ logger = get_logger()
class OCRSystem(object): class OCRSystem(object):
def __init__(self, args): def __init__(self, args):
import layoutparser as lp self.mode = args.mode
# args.det_limit_type = 'resize_long' if self.mode == 'structure':
args.drop_score = 0 import layoutparser as lp
if not args.show_log: # args.det_limit_type = 'resize_long'
logger.setLevel(logging.INFO) args.drop_score = 0
self.text_system = TextSystem(args) if not args.show_log:
self.table_system = TableSystem(args, self.text_system.text_detector, self.text_system.text_recognizer) logger.setLevel(logging.INFO)
self.text_system = TextSystem(args)
config_path = None self.table_system = TableSystem(args,
model_path = None self.text_system.text_detector,
if os.path.isdir(args.layout_path_model): self.text_system.text_recognizer)
model_path = args.layout_path_model
else: config_path = None
config_path = args.layout_path_model model_path = None
self.table_layout = lp.PaddleDetectionLayoutModel(config_path=config_path, if os.path.isdir(args.layout_path_model):
model_path=model_path, model_path = args.layout_path_model
threshold=0.5, enable_mkldnn=args.enable_mkldnn, else:
enforce_cpu=not args.use_gpu, thread_num=args.cpu_threads) config_path = args.layout_path_model
self.use_angle_cls = args.use_angle_cls self.table_layout = lp.PaddleDetectionLayoutModel(
self.drop_score = args.drop_score config_path=config_path,
model_path=model_path,
threshold=0.5,
enable_mkldnn=args.enable_mkldnn,
enforce_cpu=not args.use_gpu,
thread_num=args.cpu_threads)
self.use_angle_cls = args.use_angle_cls
self.drop_score = args.drop_score
elif self.mode == 'vqa':
self.vqa_engine = SerPredictor(args)
def __call__(self, img): def __call__(self, img):
ori_im = img.copy() if self.mode == 'structure':
layout_res = self.table_layout.detect(img[..., ::-1]) ori_im = img.copy()
res_list = [] layout_res = self.table_layout.detect(img[..., ::-1])
for region in layout_res: res_list = []
x1, y1, x2, y2 = region.coordinates for region in layout_res:
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) x1, y1, x2, y2 = region.coordinates
roi_img = ori_im[y1:y2, x1:x2, :] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
if region.type == 'Table': roi_img = ori_im[y1:y2, x1:x2, :]
res = self.table_system(roi_img) if region.type == 'Table':
else: res = self.table_system(roi_img)
filter_boxes, filter_rec_res = self.text_system(roi_img) else:
filter_boxes = [x + [x1, y1] for x in filter_boxes] filter_boxes, filter_rec_res = self.text_system(roi_img)
filter_boxes = [x.reshape(-1).tolist() for x in filter_boxes] filter_boxes = [x + [x1, y1] for x in filter_boxes]
# remove style char filter_boxes = [
style_token = ['<strike>', '<strike>', '<sup>', '</sub>', '<b>', '</b>', '<sub>', '</sup>', x.reshape(-1).tolist() for x in filter_boxes
'<overline>', '</overline>', '<underline>', '</underline>', '<i>', '</i>'] ]
filter_rec_res_tmp = [] # remove style char
for rec_res in filter_rec_res: style_token = [
rec_str, rec_conf = rec_res '<strike>', '<strike>', '<sup>', '</sub>', '<b>',
for token in style_token: '</b>', '<sub>', '</sup>', '<overline>', '</overline>',
if token in rec_str: '<underline>', '</underline>', '<i>', '</i>'
rec_str = rec_str.replace(token, '') ]
filter_rec_res_tmp.append((rec_str, rec_conf)) filter_rec_res_tmp = []
res = (filter_boxes, filter_rec_res_tmp) for rec_res in filter_rec_res:
res_list.append({'type': region.type, 'bbox': [x1, y1, x2, y2], 'img': roi_img, 'res': res}) rec_str, rec_conf = rec_res
for token in style_token:
if token in rec_str:
rec_str = rec_str.replace(token, '')
filter_rec_res_tmp.append((rec_str, rec_conf))
res = (filter_boxes, filter_rec_res_tmp)
res_list.append({
'type': region.type,
'bbox': [x1, y1, x2, y2],
'img': roi_img,
'res': res
})
elif self.mode == 'vqa':
res_list, _ = self.vqa_engine(img)
return res_list return res_list
...@@ -91,29 +114,35 @@ def save_structure_res(res, save_folder, img_name): ...@@ -91,29 +114,35 @@ def save_structure_res(res, save_folder, img_name):
excel_save_folder = os.path.join(save_folder, img_name) excel_save_folder = os.path.join(save_folder, img_name)
os.makedirs(excel_save_folder, exist_ok=True) os.makedirs(excel_save_folder, exist_ok=True)
# save res # save res
with open(os.path.join(excel_save_folder, 'res.txt'), 'w', encoding='utf8') as f: with open(
os.path.join(excel_save_folder, 'res.txt'), 'w',
encoding='utf8') as f:
for region in res: for region in res:
if region['type'] == 'Table': if region['type'] == 'Table':
excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox'])) excel_path = os.path.join(excel_save_folder,
'{}.xlsx'.format(region['bbox']))
to_excel(region['res'], excel_path) to_excel(region['res'], excel_path)
if region['type'] == 'Figure': if region['type'] == 'Figure':
roi_img = region['img'] roi_img = region['img']
img_path = os.path.join(excel_save_folder, '{}.jpg'.format(region['bbox'])) img_path = os.path.join(excel_save_folder,
'{}.jpg'.format(region['bbox']))
cv2.imwrite(img_path, roi_img) cv2.imwrite(img_path, roi_img)
else: else:
for box, rec_res in zip(region['res'][0], region['res'][1]): for box, rec_res in zip(region['res'][0], region['res'][1]):
f.write('{}\t{}\n'.format(np.array(box).reshape(-1).tolist(), rec_res)) f.write('{}\t{}\n'.format(
np.array(box).reshape(-1).tolist(), rec_res))
def main(args): def main(args):
image_file_list = get_image_file_list(args.image_dir) image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list image_file_list = image_file_list
image_file_list = image_file_list[args.process_id::args.total_process_num] image_file_list = image_file_list[args.process_id::args.total_process_num]
save_folder = args.output
os.makedirs(save_folder, exist_ok=True)
structure_sys = OCRSystem(args) structure_sys = OCRSystem(args)
img_num = len(image_file_list) img_num = len(image_file_list)
save_folder = os.path.join(args.output, structure_sys.mode)
os.makedirs(save_folder, exist_ok=True)
for i, image_file in enumerate(image_file_list): for i, image_file in enumerate(image_file_list):
logger.info("[{}/{}] {}".format(i, img_num, image_file)) logger.info("[{}/{}] {}".format(i, img_num, image_file))
img, flag = check_and_read_gif(image_file) img, flag = check_and_read_gif(image_file)
...@@ -126,10 +155,16 @@ def main(args): ...@@ -126,10 +155,16 @@ def main(args):
continue continue
starttime = time.time() starttime = time.time()
res = structure_sys(img) res = structure_sys(img)
save_structure_res(res, save_folder, img_name)
draw_img = draw_structure_result(img, res, args.vis_font_path) if structure_sys.mode == 'structure':
cv2.imwrite(os.path.join(save_folder, img_name, 'show.jpg'), draw_img) save_structure_res(res, save_folder, img_name)
logger.info('result save to {}'.format(os.path.join(save_folder, img_name))) draw_img = draw_structure_result(img, res, args.vis_font_path)
img_save_path = os.path.join(save_folder, img_name, 'show.jpg')
elif structure_sys.mode == 'vqa':
draw_img = draw_ser_results(img, res, args.vis_font_path)
img_save_path = os.path.join(save_folder, img_name + '.jpg')
cv2.imwrite(img_save_path, draw_img)
logger.info('result save to {}'.format(img_save_path))
elapse = time.time() - starttime elapse = time.time() - starttime
logger.info("Predict time : {:.3f}s".format(elapse)) logger.info("Predict time : {:.3f}s".format(elapse))
......
...@@ -20,9 +20,9 @@ We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the ...@@ -20,9 +20,9 @@ We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the
|Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)| |Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
| --- | --- | | --- | --- |
| EDD<sup>[2]</sup> | 88.3 | | EDD<sup>[2]</sup> | 88.3 |
| Ours | 93.32 | | Ours | 93.32 |
## 3. How to use ## 3. How to use
...@@ -41,7 +41,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab ...@@ -41,7 +41,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
# run # run
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_dict_path=../ppocr/utils/dict/en_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
``` ```
Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`. Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`.
...@@ -82,8 +82,8 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo ...@@ -82,8 +82,8 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows: The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
```json ```json
{"PMC4289340_004_00.png": [ {"PMC4289340_004_00.png": [
["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"], ["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"],
[[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]],
[["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]] [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]
]} ]}
``` ```
...@@ -95,7 +95,7 @@ In gt json, the key is the image name, the value is the corresponding gt, and gt ...@@ -95,7 +95,7 @@ In gt json, the key is the image name, the value is the corresponding gt, and gt
Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output. Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python ```python
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
``` ```
If the PubLatNet eval dataset is used, it will be output If the PubLatNet eval dataset is used, it will be output
...@@ -113,4 +113,4 @@ After running, the excel sheet of each picture will be saved in the directory sp ...@@ -113,4 +113,4 @@ After running, the excel sheet of each picture will be saved in the directory sp
Reference Reference
1. https://github.com/ibm-aur-nlp/PubTabNet 1. https://github.com/ibm-aur-nlp/PubTabNet
2. https://arxiv.org/pdf/1911.10683 2. https://arxiv.org/pdf/1911.10683
\ No newline at end of file
...@@ -34,9 +34,9 @@ ...@@ -34,9 +34,9 @@
|算法|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)| |算法|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
| --- | --- | | --- | --- |
| EDD<sup>[2]</sup> | 88.3 | | EDD<sup>[2]</sup> | 88.3 |
| Ours | 93.32 | | Ours | 93.32 |
<a name="3"></a> <a name="3"></a>
## 3. 使用 ## 3. 使用
...@@ -56,7 +56,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab ...@@ -56,7 +56,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
# 执行预测 # 执行预测
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_dict_path=../ppocr/utils/dict/en_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
``` ```
运行完成后,每张图片的excel表格会保存到output字段指定的目录下 运行完成后,每张图片的excel表格会保存到output字段指定的目录下
...@@ -94,8 +94,8 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo ...@@ -94,8 +94,8 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
表格使用 [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) 作为模型的评估指标。在进行模型评估之前,需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好),还需要准备评估的gt, gt示例如下: 表格使用 [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) 作为模型的评估指标。在进行模型评估之前,需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好),还需要准备评估的gt, gt示例如下:
```json ```json
{"PMC4289340_004_00.png": [ {"PMC4289340_004_00.png": [
["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"], ["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"],
[[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]],
[["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]] [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]
]} ]}
``` ```
...@@ -107,7 +107,7 @@ json 中,key为图片名,value为对应的gt,gt是一个由三个item组 ...@@ -107,7 +107,7 @@ json 中,key为图片名,value为对应的gt,gt是一个由三个item组
准备完成后使用如下命令进行评估,评估完成后会输出teds指标。 准备完成后使用如下命令进行评估,评估完成后会输出teds指标。
```python ```python
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
``` ```
如使用PubLatNet评估数据集,将会输出 如使用PubLatNet评估数据集,将会输出
```bash ```bash
...@@ -123,4 +123,4 @@ python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model ...@@ -123,4 +123,4 @@ python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model
Reference Reference
1. https://github.com/ibm-aur-nlp/PubTabNet 1. https://github.com/ibm-aur-nlp/PubTabNet
2. https://arxiv.org/pdf/1911.10683 2. https://arxiv.org/pdf/1911.10683
\ No newline at end of file
...@@ -21,13 +21,31 @@ def init_args(): ...@@ -21,13 +21,31 @@ def init_args():
parser = infer_args() parser = infer_args()
# params for output # params for output
parser.add_argument("--output", type=str, default='./output/table') parser.add_argument("--output", type=str, default='./output')
# params for table structure # params for table structure
parser.add_argument("--table_max_len", type=int, default=488) parser.add_argument("--table_max_len", type=int, default=488)
parser.add_argument("--table_model_dir", type=str) parser.add_argument("--table_model_dir", type=str)
parser.add_argument("--table_char_type", type=str, default='en') parser.add_argument("--table_char_type", type=str, default='en')
parser.add_argument("--table_char_dict_path", type=str, default="../ppocr/utils/dict/table_structure_dict.txt") parser.add_argument(
parser.add_argument("--layout_path_model", type=str, default="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config") "--table_char_dict_path",
type=str,
default="../ppocr/utils/dict/table_structure_dict.txt")
parser.add_argument(
"--layout_path_model",
type=str,
default="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config")
# params for ser
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--max_seq_length", type=int, default=512)
parser.add_argument(
"--label_map_path", type=str, default='./vqa/labels/labels_ser.txt')
parser.add_argument(
"--mode",
type=str,
default='structure',
help='structure and vqa is supported')
return parser return parser
...@@ -48,5 +66,6 @@ def draw_structure_result(image, result, font_path): ...@@ -48,5 +66,6 @@ def draw_structure_result(image, result, font_path):
boxes.append(np.array(box).reshape(-1, 2)) boxes.append(np.array(box).reshape(-1, 2))
txts.append(rec_res[0]) txts.append(rec_res[0])
scores.append(rec_res[1]) scores.append(rec_res[1])
im_show = draw_ocr_box_txt(image, boxes, txts, scores, font_path=font_path,drop_score=0) im_show = draw_ocr_box_txt(
return im_show image, boxes, txts, scores, font_path=font_path, drop_score=0)
\ No newline at end of file return im_show
# 文档视觉问答(DOC-VQA)
VQA指视觉问答,主要针对图像内容进行提问和回答,DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进行开发。
主要特性如下:
- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练。
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
本项目是 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) 在 Paddle 2.2上的开源实现,
包含了在 [XFUND数据集](https://github.com/doc-analysis/XFUND) 上的微调代码。
## 1 性能
我们在 [XFUN](https://github.com/doc-analysis/XFUND) 评估数据集上对算法进行了评估,性能如下
|任务| f1 | 模型下载地址|
|:---:|:---:| :---:|
|SER|0.9056| [链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar)|
|RE|0.7113| [链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar)|
## 2. 效果演示
**注意:** 测试图片来源于XFUN数据集。
### 2.1 SER
![](./images/result_ser/zh_val_0_ser.jpg) | ![](./images/result_ser/zh_val_42_ser.jpg)
---|---
图中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别
* 深紫色:HEADER
* 浅紫色:QUESTION
* 军绿色:ANSWER
在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
### 2.2 RE
![](./images/result_re/zh_val_21_re.jpg) | ![](./images/result_re/zh_val_40_re.jpg)
---|---
图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
## 3. 安装
### 3.1 安装依赖
- **(1) 安装PaddlePaddle**
```bash
pip3 install --upgrade pip
# GPU安装
python3 -m pip install paddlepaddle-gpu==2.2 -i https://mirror.baidu.com/pypi/simple
# CPU安装
python3 -m pip install paddlepaddle==2.2 -i https://mirror.baidu.com/pypi/simple
```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
### 3.2 安装PaddleOCR(包含 PP-OCR 和 VQA )
- **(1)pip快速安装PaddleOCR whl包(仅预测)**
```bash
pip install paddleocr
```
- **(2)下载VQA源码(预测+训练)**
```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR
# 如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR
# 注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```
- **(3)安装PaddleNLP**
```bash
# 需要使用PaddleNLP最新的代码版本进行安装
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
pip install -e .
```
- **(4)安装VQA的`requirements`**
```bash
cd ppstructure/vqa
pip install -r requirements.txt
```
## 4. 使用
### 4.1 数据和预训练模型准备
处理好的XFUN中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)
下载并解压该数据集,解压后将数据集放置在当前目录下。
```shell
wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
```
如果希望转换XFUN中其他语言的数据集,可以参考[XFUN数据转换脚本](helper/trans_xfun_data.py)
如果希望直接体验预测过程,可以下载我们提供的预训练模型,跳过训练过程,直接预测即可。
### 4.2 SER任务
* 启动训练
```shell
python3.7 train_ser.py \
--model_name_or_path "layoutxlm-base-uncased" \
--train_data_dir "XFUND/zh_train/image" \
--train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
--eval_data_dir "XFUND/zh_val/image" \
--eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
--num_train_epochs 200 \
--eval_steps 10 \
--save_steps 500 \
--output_dir "./output/ser/" \
--learning_rate 5e-5 \
--warmup_steps 50 \
--evaluate_during_training \
--seed 2048
```
最终会打印出`precision`, `recall`, `f1`等指标,模型和训练日志会保存在`./output/ser/`文件夹中。
* 使用评估集合中提供的OCR识别结果进行预测
```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 infer_ser.py \
--model_name_or_path "./PP-Layout_v1.0_ser_pretrained/" \
--output_dir "output_res/" \
--infer_imgs "XFUND/zh_val/image/" \
--ocr_json_path "XFUND/zh_val/xfun_normalize_val.json"
```
最终会在`output_res`目录下保存预测结果可视化图像以及预测结果文本文件,文件名为`infer_results.txt`
* 使用`OCR引擎 + SER`串联结果
```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 infer_ser_e2e.py \
--model_name_or_path "./output/PP-Layout_v1.0_ser_pretrained/" \
--max_seq_length 512 \
--output_dir "output_res_e2e/" \
--infer_imgs "images/input/zh_val_0.jpg"
```
*`OCR引擎 + SER`预测系统进行端到端评估
```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json --pred_json_path output_res/infer_results.txt
```
### 3.3 RE任务
* 启动训练
```shell
python3 train_re.py \
--model_name_or_path "layoutxlm-base-uncased" \
--train_data_dir "XFUND/zh_train/image" \
--train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
--eval_data_dir "XFUND/zh_val/image" \
--eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
--label_map_path 'labels/labels_ser.txt' \
--num_train_epochs 2 \
--eval_steps 10 \
--save_steps 500 \
--output_dir "output/re/" \
--learning_rate 5e-5 \
--warmup_steps 50 \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 8 \
--evaluate_during_training \
--seed 2048
```
最终会打印出`precision`, `recall`, `f1`等指标,模型和训练日志会保存在`./output/re/`文件夹中。
* 使用评估集合中提供的OCR识别结果进行预测
```shell
export CUDA_VISIBLE_DEVICES=0
python3 infer_re.py \
--model_name_or_path "./PP-Layout_v1.0_re_pretrained/" \
--max_seq_length 512 \
--eval_data_dir "XFUND/zh_val/image" \
--eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
--label_map_path 'labels/labels_ser.txt' \
--output_dir "output_res" \
--per_gpu_eval_batch_size 1 \
--seed 2048
```
最终会在`output_res`目录下保存预测结果可视化图像以及预测结果文本文件,文件名为`infer_results.txt`
* 使用`OCR引擎 + SER + RE`串联结果
```shell
export CUDA_VISIBLE_DEVICES=0
# python3.7 infer_ser_re_e2e.py \
--model_name_or_path "./PP-Layout_v1.0_ser_pretrained/" \
--re_model_name_or_path "./PP-Layout_v1.0_re_pretrained/" \
--max_seq_length 512 \
--output_dir "output_ser_re_e2e_train/" \
--infer_imgs "images/input/zh_val_21.jpg"
```
## 参考链接
- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import numbers
import numpy as np
class DataCollator:
"""
data batch
"""
def __call__(self, batch):
data_dict = {}
to_tensor_keys = []
for sample in batch:
for k, v in sample.items():
if k not in data_dict:
data_dict[k] = []
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
if k not in to_tensor_keys:
to_tensor_keys.append(k)
data_dict[k].append(v)
for k in to_tensor_keys:
data_dict[k] = paddle.to_tensor(data_dict[k])
return data_dict
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import sys
# import Polygon
import shapely
from shapely.geometry import Polygon
import numpy as np
from collections import defaultdict
import operator
import editdistance
import argparse
import json
import copy
def parse_ser_results_fp(fp, fp_type="gt", ignore_background=True):
# img/zh_val_0.jpg {
# "height": 3508,
# "width": 2480,
# "ocr_info": [
# {"text": "Maribyrnong", "label": "other", "bbox": [1958, 144, 2184, 198]},
# {"text": "CITYCOUNCIL", "label": "other", "bbox": [2052, 183, 2171, 214]},
# ]
assert fp_type in ["gt", "pred"]
key = "label" if fp_type == "gt" else "pred"
res_dict = dict()
with open(fp, "r") as fin:
lines = fin.readlines()
for _, line in enumerate(lines):
img_path, info = line.strip().split("\t")
# get key
image_name = os.path.basename(img_path)
res_dict[image_name] = []
# get infos
json_info = json.loads(info)
for single_ocr_info in json_info["ocr_info"]:
label = single_ocr_info[key].upper()
if label in ["O", "OTHERS", "OTHER"]:
label = "O"
if ignore_background and label == "O":
continue
single_ocr_info["label"] = label
res_dict[image_name].append(copy.deepcopy(single_ocr_info))
return res_dict
def polygon_from_str(polygon_points):
"""
Create a shapely polygon object from gt or dt line.
"""
polygon_points = np.array(polygon_points).reshape(4, 2)
polygon = Polygon(polygon_points).convex_hull
return polygon
def polygon_iou(poly1, poly2):
"""
Intersection over union between two shapely polygons.
"""
if not poly1.intersects(
poly2): # this test is fast and can accelerate calculation
iou = 0
else:
try:
inter_area = poly1.intersection(poly2).area
union_area = poly1.area + poly2.area - inter_area
iou = float(inter_area) / union_area
except shapely.geos.TopologicalError:
# except Exception as e:
# print(e)
print('shapely.geos.TopologicalError occured, iou set to 0')
iou = 0
return iou
def ed(args, str1, str2):
if args.ignore_space:
str1 = str1.replace(" ", "")
str2 = str2.replace(" ", "")
if args.ignore_case:
str1 = str1.lower()
str2 = str2.lower()
return editdistance.eval(str1, str2)
def convert_bbox_to_polygon(bbox):
"""
bbox : [x1, y1, x2, y2]
output: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
"""
xmin, ymin, xmax, ymax = bbox
poly = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
return poly
def eval_e2e(args):
# gt
gt_results = parse_ser_results_fp(args.gt_json_path, "gt",
args.ignore_background)
# pred
dt_results = parse_ser_results_fp(args.pred_json_path, "pred",
args.ignore_background)
assert set(gt_results.keys()) == set(dt_results.keys())
iou_thresh = args.iou_thres
num_gt_chars = 0
gt_count = 0
dt_count = 0
hit = 0
ed_sum = 0
for img_name in gt_results:
gt_info = gt_results[img_name]
gt_count += len(gt_info)
dt_info = dt_results[img_name]
dt_count += len(dt_info)
dt_match = [False] * len(dt_info)
gt_match = [False] * len(gt_info)
all_ious = defaultdict(tuple)
# gt: {text, label, bbox or poly}
for index_gt, gt in enumerate(gt_info):
if "poly" not in gt:
gt["poly"] = convert_bbox_to_polygon(gt["bbox"])
gt_poly = polygon_from_str(gt["poly"])
for index_dt, dt in enumerate(dt_info):
if "poly" not in dt:
dt["poly"] = convert_bbox_to_polygon(dt["bbox"])
dt_poly = polygon_from_str(dt["poly"])
iou = polygon_iou(dt_poly, gt_poly)
if iou >= iou_thresh:
all_ious[(index_gt, index_dt)] = iou
sorted_ious = sorted(
all_ious.items(), key=operator.itemgetter(1), reverse=True)
sorted_gt_dt_pairs = [item[0] for item in sorted_ious]
# matched gt and dt
for gt_dt_pair in sorted_gt_dt_pairs:
index_gt, index_dt = gt_dt_pair
if gt_match[index_gt] == False and dt_match[index_dt] == False:
gt_match[index_gt] = True
dt_match[index_dt] = True
# ocr rec results
gt_text = gt_info[index_gt]["text"]
dt_text = dt_info[index_dt]["text"]
# ser results
gt_label = gt_info[index_gt]["label"]
dt_label = dt_info[index_dt]["pred"]
if True: # ignore_masks[index_gt] == '0':
ed_sum += ed(args, gt_text, dt_text)
num_gt_chars += len(gt_text)
if gt_text == dt_text:
if args.ignore_ser_prediction or gt_label == dt_label:
hit += 1
# unmatched dt
for tindex, dt_match_flag in enumerate(dt_match):
if dt_match_flag == False:
dt_text = dt_info[tindex]["text"]
gt_text = ""
ed_sum += ed(args, dt_text, gt_text)
# unmatched gt
for tindex, gt_match_flag in enumerate(gt_match):
if gt_match_flag == False:
dt_text = ""
gt_text = gt_info[tindex]["text"]
ed_sum += ed(args, gt_text, dt_text)
num_gt_chars += len(gt_text)
eps = 1e-9
print("config: ", args)
print('hit, dt_count, gt_count', hit, dt_count, gt_count)
precision = hit / (dt_count + eps)
recall = hit / (gt_count + eps)
fmeasure = 2.0 * precision * recall / (precision + recall + eps)
avg_edit_dist_img = ed_sum / len(gt_results)
avg_edit_dist_field = ed_sum / (gt_count + eps)
character_acc = 1 - ed_sum / (num_gt_chars + eps)
print('character_acc: %.2f' % (character_acc * 100) + "%")
print('avg_edit_dist_field: %.2f' % (avg_edit_dist_field))
print('avg_edit_dist_img: %.2f' % (avg_edit_dist_img))
print('precision: %.2f' % (precision * 100) + "%")
print('recall: %.2f' % (recall * 100) + "%")
print('fmeasure: %.2f' % (fmeasure * 100) + "%")
return
def parse_args():
"""
"""
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument(
"--gt_json_path",
default=None,
type=str,
required=True, )
parser.add_argument(
"--pred_json_path",
default=None,
type=str,
required=True, )
parser.add_argument("--iou_thres", default=0.5, type=float)
parser.add_argument(
"--ignore_case",
default=False,
type=str2bool,
help="whether to do lower case for the strs")
parser.add_argument(
"--ignore_space",
default=True,
type=str2bool,
help="whether to ignore space")
parser.add_argument(
"--ignore_background",
default=True,
type=str2bool,
help="whether to ignore other label")
parser.add_argument(
"--ignore_ser_prediction",
default=False,
type=str2bool,
help="whether to ignore ocr pred results")
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
eval_e2e(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
def transfer_xfun_data(json_path=None, output_file=None):
with open(json_path, "r") as fin:
lines = fin.readlines()
json_info = json.loads(lines[0])
documents = json_info["documents"]
label_info = {}
with open(output_file, "w") as fout:
for idx, document in enumerate(documents):
img_info = document["img"]
document = document["document"]
image_path = img_info["fname"]
label_info["height"] = img_info["height"]
label_info["width"] = img_info["width"]
label_info["ocr_info"] = []
for doc in document:
label_info["ocr_info"].append({
"text": doc["text"],
"label": doc["label"],
"bbox": doc["box"],
"id": doc["id"],
"linking": doc["linking"],
"words": doc["words"]
})
fout.write(image_path + "\t" + json.dumps(
label_info, ensure_ascii=False) + "\n")
print("===ok====")
transfer_xfun_data("./xfun/zh.val.json", "./xfun_normalize_val.json")
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import random
import cv2
import matplotlib.pyplot as plt
import numpy as np
import paddle
from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction
from xfun import XFUNDataset
from utils import parse_args, get_bio_label_maps, draw_re_results
from data_collator import DataCollator
from ppocr.utils.logging import get_logger
def infer(args):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger()
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
model = LayoutXLMForRelationExtraction.from_pretrained(
args.model_name_or_path)
eval_dataset = XFUNDataset(
tokenizer,
data_dir=args.eval_data_dir,
label_path=args.eval_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
max_seq_len=args.max_seq_length,
pad_token_label_id=pad_token_label_id,
contains_re=True,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
eval_dataloader = paddle.io.DataLoader(
eval_dataset,
batch_size=args.per_gpu_eval_batch_size,
num_workers=8,
shuffle=False,
collate_fn=DataCollator())
# 读取gt的oct数据
ocr_info_list = load_ocr(args.eval_data_dir, args.eval_label_path)
for idx, batch in enumerate(eval_dataloader):
logger.info("[Infer] process: {}/{}".format(idx, len(eval_dataloader)))
with paddle.no_grad():
outputs = model(**batch)
pred_relations = outputs['pred_relations']
ocr_info = ocr_info_list[idx]
image_path = ocr_info['image_path']
ocr_info = ocr_info['ocr_info']
# 根据entity里的信息,做token解码后去过滤不要的ocr_info
ocr_info = filter_bg_by_txt(ocr_info, batch, tokenizer)
# 进行 relations 到 ocr信息的转换
result = []
used_tail_id = []
for relations in pred_relations:
for relation in relations:
if relation['tail_id'] in used_tail_id:
continue
if relation['head_id'] not in ocr_info or relation[
'tail_id'] not in ocr_info:
continue
used_tail_id.append(relation['tail_id'])
ocr_info_head = ocr_info[relation['head_id']]
ocr_info_tail = ocr_info[relation['tail_id']]
result.append((ocr_info_head, ocr_info_tail))
img = cv2.imread(image_path)
img_show = draw_re_results(img, result)
save_path = os.path.join(args.output_dir, os.path.basename(image_path))
cv2.imwrite(save_path, img_show)
def load_ocr(img_folder, json_path):
import json
d = []
with open(json_path, "r") as fin:
lines = fin.readlines()
for line in lines:
image_name, info_str = line.split("\t")
info_dict = json.loads(info_str)
info_dict['image_path'] = os.path.join(img_folder, image_name)
d.append(info_dict)
return d
def filter_bg_by_txt(ocr_info, batch, tokenizer):
entities = batch['entities'][0]
input_ids = batch['input_ids'][0]
new_info_dict = {}
for i in range(len(entities['start'])):
entitie_head = entities['start'][i]
entitie_tail = entities['end'][i]
word_input_ids = input_ids[entitie_head:entitie_tail].numpy().tolist()
txt = tokenizer.convert_ids_to_tokens(word_input_ids)
txt = tokenizer.convert_tokens_to_string(txt)
for i, info in enumerate(ocr_info):
if info['text'] == txt:
new_info_dict[i] = info
return new_info_dict
def post_process(pred_relations, ocr_info, img):
result = []
for relations in pred_relations:
for relation in relations:
ocr_info_head = ocr_info[relation['head_id']]
ocr_info_tail = ocr_info[relation['tail_id']]
result.append((ocr_info_head, ocr_info_tail))
return result
def draw_re(result, image_path, output_folder):
img = cv2.imread(image_path)
from matplotlib import pyplot as plt
for ocr_info_head, ocr_info_tail in result:
cv2.rectangle(
img,
tuple(ocr_info_head['bbox'][:2]),
tuple(ocr_info_head['bbox'][2:]), (255, 0, 0),
thickness=2)
cv2.rectangle(
img,
tuple(ocr_info_tail['bbox'][:2]),
tuple(ocr_info_tail['bbox'][2:]), (0, 0, 255),
thickness=2)
center_p1 = [(ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2,
(ocr_info_head['bbox'][1] + ocr_info_head['bbox'][3]) // 2]
center_p2 = [(ocr_info_tail['bbox'][0] + ocr_info_tail['bbox'][2]) // 2,
(ocr_info_tail['bbox'][1] + ocr_info_tail['bbox'][3]) // 2]
cv2.line(
img, tuple(center_p1), tuple(center_p2), (0, 255, 0), thickness=2)
plt.imshow(img)
plt.savefig(
os.path.join(output_folder, os.path.basename(image_path)), dpi=600)
# plt.show()
if __name__ == "__main__":
args = parse_args()
infer(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
import paddle
# relative reference
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
def pad_sentences(tokenizer,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding with larger size, reshape is carried out
max_seq_len = (
len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [tokenizer.pad_token_id] * difference
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
] * difference
else:
assert False, f"padding_side of tokenizer just supports [\"right\"] but got {tokenizer.padding_side}"
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def split_page(encoded_inputs, max_seq_len=512):
"""
truncate is often used in training process
"""
for key in encoded_inputs:
encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
if encoded_inputs[key].ndim <= 1: # for input_ids, att_mask and so on
encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
else: # for bbox
encoded_inputs[key] = encoded_inputs[key].reshape(
[-1, max_seq_len, 4])
return encoded_inputs
def preprocess(
tokenizer,
ori_img,
ocr_info,
img_size=(224, 224),
pad_token_label_id=-100,
max_seq_len=512,
add_special_ids=False,
return_attention_mask=True, ):
ocr_info = deepcopy(ocr_info)
height = ori_img.shape[0]
width = ori_img.shape[1]
img = cv2.resize(ori_img,
(224, 224)).transpose([2, 0, 1]).astype(np.float32)
segment_offset_id = []
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
for info in ocr_info:
# x1, y1, x2, y2
bbox = info["bbox"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
if not add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
encoded_inputs = {
"input_ids": input_ids_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
}
encoded_inputs = pad_sentences(
tokenizer,
encoded_inputs,
max_seq_len=max_seq_len,
return_attention_mask=return_attention_mask)
encoded_inputs = split_page(encoded_inputs)
fake_bs = encoded_inputs["input_ids"].shape[0]
encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
[fake_bs] + list(img.shape))
encoded_inputs["segment_offset_id"] = segment_offset_id
return encoded_inputs
def postprocess(attention_mask, preds, label_map_path):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds = np.argmax(preds, axis=2)
_, label_map = get_bio_label_maps(label_map_path)
preds_list = [[] for _ in range(preds.shape[0])]
# keep batch info
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if attention_mask[i][j] == 1:
preds_list[i].append(label_map[preds[i][j]])
return preds_list
def merge_preds_list_with_ocr_info(label_map_path, ocr_info, segment_offset_id,
preds_list):
# must ensure the preds_list is generated from the same image
preds = [p for pred in preds_list for p in pred]
label2id_map, _ = get_bio_label_maps(label_map_path)
for key in label2id_map:
if key.startswith("I-"):
label2id_map[key] = label2id_map["B" + key[1:]]
id2label_map = dict()
for key in label2id_map:
val = label2id_map[key]
if key == "O":
id2label_map[val] = key
if key.startswith("B-") or key.startswith("I-"):
id2label_map[val] = key[2:]
else:
id2label_map[val] = key
for idx in range(len(segment_offset_id)):
if idx == 0:
start_id = 0
else:
start_id = segment_offset_id[idx - 1]
end_id = segment_offset_id[idx]
curr_pred = preds[start_id:end_id]
curr_pred = [label2id_map[p] for p in curr_pred]
if len(curr_pred) <= 0:
pred_id = 0
else:
counts = np.bincount(curr_pred)
pred_id = np.argmax(counts)
ocr_info[idx]["pred_id"] = int(pred_id)
ocr_info[idx]["pred"] = id2label_map[pred_id]
return ocr_info
@paddle.no_grad()
def infer(args):
os.makedirs(args.output_dir, exist_ok=True)
# init token and model
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
# model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
model = LayoutXLMForTokenClassification.from_pretrained(
args.model_name_or_path)
model.eval()
# load ocr results json
ocr_results = dict()
with open(args.ocr_json_path, "r") as fin:
lines = fin.readlines()
for line in lines:
img_name, json_info = line.split("\t")
ocr_results[os.path.basename(img_name)] = json.loads(json_info)
# get infer img list
infer_imgs = get_image_file_list(args.infer_imgs)
# loop for infer
with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout:
for idx, img_path in enumerate(infer_imgs):
print("process: [{}/{}]".format(idx, len(infer_imgs), img_path))
img = cv2.imread(img_path)
ocr_info = ocr_results[os.path.basename(img_path)]["ocr_info"]
inputs = preprocess(
tokenizer=tokenizer,
ori_img=img,
ocr_info=ocr_info,
max_seq_len=args.max_seq_length)
outputs = model(
input_ids=inputs["input_ids"],
bbox=inputs["bbox"],
image=inputs["image"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"])
preds = outputs[0]
preds = postprocess(inputs["attention_mask"], preds,
args.label_map_path)
ocr_info = merge_preds_list_with_ocr_info(
args.label_map_path, ocr_info, inputs["segment_offset_id"],
preds)
fout.write(img_path + "\t" + json.dumps(
{
"ocr_info": ocr_info,
}, ensure_ascii=False) + "\n")
img_res = draw_ser_results(img, ocr_info)
cv2.imwrite(
os.path.join(args.output_dir, os.path.basename(img_path)),
img_res)
return
if __name__ == "__main__":
args = parse_args()
infer(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image
import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
# relative reference
from .utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
from .utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
def trans_poly_to_bbox(poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
return [x1, y1, x2, y2]
def parse_ocr_info_for_ser(ocr_result):
ocr_info = []
for res in ocr_result:
ocr_info.append({
"text": res[1][0],
"bbox": trans_poly_to_bbox(res[0]),
"poly": res[0],
})
return ocr_info
class SerPredictor(object):
def __init__(self, args):
self.max_seq_length = args.max_seq_length
# init ser token and model
self.tokenizer = LayoutXLMTokenizer.from_pretrained(
args.model_name_or_path)
self.model = LayoutXLMForTokenClassification.from_pretrained(
args.model_name_or_path)
self.model.eval()
# init ocr_engine
from paddleocr import PaddleOCR
self.ocr_engine = PaddleOCR(
rec_model_dir=args.rec_model_dir,
det_model_dir=args.det_model_dir,
use_angle_cls=False,
show_log=False)
# init dict
label2id_map, self.id2label_map = get_bio_label_maps(
args.label_map_path)
self.label2id_map_for_draw = dict()
for key in label2id_map:
if key.startswith("I-"):
self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
else:
self.label2id_map_for_draw[key] = label2id_map[key]
def __call__(self, img):
ocr_result = self.ocr_engine.ocr(img, cls=False)
ocr_info = parse_ocr_info_for_ser(ocr_result)
inputs = preprocess(
tokenizer=self.tokenizer,
ori_img=img,
ocr_info=ocr_info,
max_seq_len=self.max_seq_length)
outputs = self.model(
input_ids=inputs["input_ids"],
bbox=inputs["bbox"],
image=inputs["image"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"])
preds = outputs[0]
preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
ocr_info = merge_preds_list_with_ocr_info(
ocr_info, inputs["segment_offset_id"], preds,
self.label2id_map_for_draw)
return ocr_info, inputs
if __name__ == "__main__":
args = parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# get infer img list
infer_imgs = get_image_file_list(args.infer_imgs)
# loop for infer
ser_engine = SerPredictor(args)
with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout:
for idx, img_path in enumerate(infer_imgs):
print("process: [{}/{}], {}".format(idx, len(infer_imgs), img_path))
img = cv2.imread(img_path)
result, _ = ser_engine(img)
fout.write(img_path + "\t" + json.dumps(
{
"ser_resule": result,
}, ensure_ascii=False) + "\n")
img_res = draw_ser_results(img, result)
cv2.imwrite(
os.path.join(args.output_dir,
os.path.splitext(os.path.basename(img_path))[0] +
"_ser.jpg"), img_res)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image
import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForRelationExtraction
# relative reference
from utils import parse_args, get_image_file_list, draw_re_results
from infer_ser_e2e import SerPredictor
def make_input(ser_input, ser_result, max_seq_len=512):
entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2}
entities = ser_input['entities'][0]
assert len(entities) == len(ser_result)
# entities
start = []
end = []
label = []
entity_idx_dict = {}
for i, (res, entity) in enumerate(zip(ser_result, entities)):
if res['pred'] == 'O':
continue
entity_idx_dict[len(start)] = i
start.append(entity['start'])
end.append(entity['end'])
label.append(entities_labels[res['pred']])
entities = dict(start=start, end=end, label=label)
# relations
head = []
tail = []
for i in range(len(entities["label"])):
for j in range(len(entities["label"])):
if entities["label"][i] == 1 and entities["label"][j] == 2:
head.append(i)
tail.append(j)
relations = dict(head=head, tail=tail)
batch_size = ser_input["input_ids"].shape[0]
entities_batch = []
relations_batch = []
for b in range(batch_size):
entities_batch.append(entities)
relations_batch.append(relations)
ser_input['entities'] = entities_batch
ser_input['relations'] = relations_batch
ser_input.pop('segment_offset_id')
return ser_input, entity_idx_dict
class SerReSystem(object):
def __init__(self, args):
self.ser_engine = SerPredictor(args)
self.tokenizer = LayoutXLMTokenizer.from_pretrained(
args.re_model_name_or_path)
self.model = LayoutXLMForRelationExtraction.from_pretrained(
args.re_model_name_or_path)
self.model.eval()
def __call__(self, img):
ser_result, ser_inputs = self.ser_engine(img)
re_input, entity_idx_dict = make_input(ser_inputs, ser_result)
re_result = self.model(**re_input)
pred_relations = re_result['pred_relations'][0]
# 进行 relations 到 ocr信息的转换
result = []
used_tail_id = []
for relation in pred_relations:
if relation['tail_id'] in used_tail_id:
continue
used_tail_id.append(relation['tail_id'])
ocr_info_head = ser_result[entity_idx_dict[relation['head_id']]]
ocr_info_tail = ser_result[entity_idx_dict[relation['tail_id']]]
result.append((ocr_info_head, ocr_info_tail))
return result
if __name__ == "__main__":
args = parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# get infer img list
infer_imgs = get_image_file_list(args.infer_imgs)
# loop for infer
ser_re_engine = SerReSystem(args)
with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout:
for idx, img_path in enumerate(infer_imgs):
print("process: [{}/{}], {}".format(idx, len(infer_imgs), img_path))
img = cv2.imread(img_path)
result = ser_re_engine(img)
fout.write(img_path + "\t" + json.dumps(
{
"result": result,
}, ensure_ascii=False) + "\n")
img_res = draw_re_results(img, result)
cv2.imwrite(
os.path.join(args.output_dir,
os.path.splitext(os.path.basename(img_path))[0] +
"_re.jpg"), img_res)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import numpy as np
import logging
logger = logging.getLogger(__name__)
PREFIX_CHECKPOINT_DIR = "checkpoint"
_re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$")
def get_last_checkpoint(folder):
content = os.listdir(folder)
checkpoints = [
path for path in content
if _re_checkpoint.search(path) is not None and os.path.isdir(
os.path.join(folder, path))
]
if len(checkpoints) == 0:
return
return os.path.join(
folder,
max(checkpoints,
key=lambda x: int(_re_checkpoint.search(x).groups()[0])))
def re_score(pred_relations, gt_relations, mode="strict"):
"""Evaluate RE predictions
Args:
pred_relations (list) : list of list of predicted relations (several relations in each sentence)
gt_relations (list) : list of list of ground truth relations
rel = { "head": (start_idx (inclusive), end_idx (exclusive)),
"tail": (start_idx (inclusive), end_idx (exclusive)),
"head_type": ent_type,
"tail_type": ent_type,
"type": rel_type}
vocab (Vocab) : dataset vocabulary
mode (str) : in 'strict' or 'boundaries'"""
assert mode in ["strict", "boundaries"]
relation_types = [v for v in [0, 1] if not v == 0]
scores = {
rel: {
"tp": 0,
"fp": 0,
"fn": 0
}
for rel in relation_types + ["ALL"]
}
# Count GT relations and Predicted relations
n_sents = len(gt_relations)
n_rels = sum([len([rel for rel in sent]) for sent in gt_relations])
n_found = sum([len([rel for rel in sent]) for sent in pred_relations])
# Count TP, FP and FN per type
for pred_sent, gt_sent in zip(pred_relations, gt_relations):
for rel_type in relation_types:
# strict mode takes argument types into account
if mode == "strict":
pred_rels = {(rel["head"], rel["head_type"], rel["tail"],
rel["tail_type"])
for rel in pred_sent if rel["type"] == rel_type}
gt_rels = {(rel["head"], rel["head_type"], rel["tail"],
rel["tail_type"])
for rel in gt_sent if rel["type"] == rel_type}
# boundaries mode only takes argument spans into account
elif mode == "boundaries":
pred_rels = {(rel["head"], rel["tail"])
for rel in pred_sent if rel["type"] == rel_type}
gt_rels = {(rel["head"], rel["tail"])
for rel in gt_sent if rel["type"] == rel_type}
scores[rel_type]["tp"] += len(pred_rels & gt_rels)
scores[rel_type]["fp"] += len(pred_rels - gt_rels)
scores[rel_type]["fn"] += len(gt_rels - pred_rels)
# Compute per entity Precision / Recall / F1
for rel_type in scores.keys():
if scores[rel_type]["tp"]:
scores[rel_type]["p"] = scores[rel_type]["tp"] / (
scores[rel_type]["fp"] + scores[rel_type]["tp"])
scores[rel_type]["r"] = scores[rel_type]["tp"] / (
scores[rel_type]["fn"] + scores[rel_type]["tp"])
else:
scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0
if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0:
scores[rel_type]["f1"] = (
2 * scores[rel_type]["p"] * scores[rel_type]["r"] /
(scores[rel_type]["p"] + scores[rel_type]["r"]))
else:
scores[rel_type]["f1"] = 0
# Compute micro F1 Scores
tp = sum([scores[rel_type]["tp"] for rel_type in relation_types])
fp = sum([scores[rel_type]["fp"] for rel_type in relation_types])
fn = sum([scores[rel_type]["fn"] for rel_type in relation_types])
if tp:
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
else:
precision, recall, f1 = 0, 0, 0
scores["ALL"]["p"] = precision
scores["ALL"]["r"] = recall
scores["ALL"]["f1"] = f1
scores["ALL"]["tp"] = tp
scores["ALL"]["fp"] = fp
scores["ALL"]["fn"] = fn
# Compute Macro F1 Scores
scores["ALL"]["Macro_f1"] = np.mean(
[scores[ent_type]["f1"] for ent_type in relation_types])
scores["ALL"]["Macro_p"] = np.mean(
[scores[ent_type]["p"] for ent_type in relation_types])
scores["ALL"]["Macro_r"] = np.mean(
[scores[ent_type]["r"] for ent_type in relation_types])
# logger.info(f"RE Evaluation in *** {mode.upper()} *** mode")
# logger.info(
# "processed {} sentences with {} relations; found: {} relations; correct: {}.".format(
# n_sents, n_rels, n_found, tp
# )
# )
# logger.info(
# "\tALL\t TP: {};\tFP: {};\tFN: {}".format(scores["ALL"]["tp"], scores["ALL"]["fp"], scores["ALL"]["fn"])
# )
# logger.info("\t\t(m avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (micro)".format(precision, recall, f1))
# logger.info(
# "\t\t(M avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (Macro)\n".format(
# scores["ALL"]["Macro_p"], scores["ALL"]["Macro_r"], scores["ALL"]["Macro_f1"]
# )
# )
# for rel_type in relation_types:
# logger.info(
# "\t{}: \tTP: {};\tFP: {};\tFN: {};\tprecision: {:.2f};\trecall: {:.2f};\tf1: {:.2f};\t{}".format(
# rel_type,
# scores[rel_type]["tp"],
# scores[rel_type]["fp"],
# scores[rel_type]["fn"],
# scores[rel_type]["p"],
# scores[rel_type]["r"],
# scores[rel_type]["f1"],
# scores[rel_type]["tp"] + scores[rel_type]["fp"],
# )
# )
return scores
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import random
import numpy as np
import paddle
from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction
from xfun import XFUNDataset
from utils import parse_args, get_bio_label_maps, print_arguments
from data_collator import DataCollator
from metric import re_score
from ppocr.utils.logging import get_logger
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def cal_metric(re_preds, re_labels, entities):
gt_relations = []
for b in range(len(re_labels)):
rel_sent = []
for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]):
rel = {}
rel["head_id"] = head
rel["head"] = (entities[b]["start"][rel["head_id"]],
entities[b]["end"][rel["head_id"]])
rel["head_type"] = entities[b]["label"][rel["head_id"]]
rel["tail_id"] = tail
rel["tail"] = (entities[b]["start"][rel["tail_id"]],
entities[b]["end"][rel["tail_id"]])
rel["tail_type"] = entities[b]["label"][rel["tail_id"]]
rel["type"] = 1
rel_sent.append(rel)
gt_relations.append(rel_sent)
re_metrics = re_score(re_preds, gt_relations, mode="boundaries")
return re_metrics
def evaluate(model, eval_dataloader, logger, prefix=""):
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = {}".format(len(eval_dataloader.dataset)))
re_preds = []
re_labels = []
entities = []
eval_loss = 0.0
model.eval()
for idx, batch in enumerate(eval_dataloader):
with paddle.no_grad():
outputs = model(**batch)
loss = outputs['loss'].mean().item()
if paddle.distributed.get_rank() == 0:
logger.info("[Eval] process: {}/{}, loss: {:.5f}".format(
idx, len(eval_dataloader), loss))
eval_loss += loss
re_preds.extend(outputs['pred_relations'])
re_labels.extend(batch['relations'])
entities.extend(batch['entities'])
re_metrics = cal_metric(re_preds, re_labels, entities)
re_metrics = {
"precision": re_metrics["ALL"]["p"],
"recall": re_metrics["ALL"]["r"],
"f1": re_metrics["ALL"]["f1"],
}
model.train()
return re_metrics
def train(args):
logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
print_arguments(args, logger)
# Added here for reproducibility (even between python 2 and 3)
set_seed(args.seed)
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
# dist mode
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
model = LayoutXLMForRelationExtraction(model, dropout=None)
# dist mode
if paddle.distributed.get_world_size() > 1:
model = paddle.distributed.DataParallel(model)
train_dataset = XFUNDataset(
tokenizer,
data_dir=args.train_data_dir,
label_path=args.train_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
max_seq_len=args.max_seq_length,
pad_token_label_id=pad_token_label_id,
contains_re=True,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
eval_dataset = XFUNDataset(
tokenizer,
data_dir=args.eval_data_dir,
label_path=args.eval_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
max_seq_len=args.max_seq_length,
pad_token_label_id=pad_token_label_id,
contains_re=True,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
train_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
args.train_batch_size = args.per_gpu_train_batch_size * \
max(1, paddle.distributed.get_world_size())
train_dataloader = paddle.io.DataLoader(
train_dataset,
batch_sampler=train_sampler,
num_workers=8,
use_shared_memory=True,
collate_fn=DataCollator())
eval_dataloader = paddle.io.DataLoader(
eval_dataset,
batch_size=args.per_gpu_eval_batch_size,
num_workers=8,
shuffle=False,
collate_fn=DataCollator())
t_total = len(train_dataloader) * args.num_train_epochs
# build linear decay with warmup lr sch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=t_total,
end_lr=0.0,
power=1.0)
if args.warmup_steps > 0:
lr_scheduler = paddle.optimizer.lr.LinearWarmup(
lr_scheduler,
args.warmup_steps,
start_lr=0,
end_lr=args.learning_rate, )
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
optimizer = paddle.optimizer.Adam(
learning_rate=args.learning_rate,
parameters=model.parameters(),
epsilon=args.adam_epsilon,
grad_clip=grad_clip,
weight_decay=args.weight_decay)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = {}".format(len(train_dataset)))
logger.info(" Num Epochs = {}".format(args.num_train_epochs))
logger.info(" Instantaneous batch size per GPU = {}".format(
args.per_gpu_train_batch_size))
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = {}".
format(args.train_batch_size * paddle.distributed.get_world_size()))
logger.info(" Total optimization steps = {}".format(t_total))
global_step = 0
model.clear_gradients()
train_dataloader_len = len(train_dataloader)
best_metirc = {'f1': 0}
model.train()
for epoch in range(int(args.num_train_epochs)):
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
# model outputs are always tuple in ppnlp (see doc)
loss = outputs['loss']
loss = loss.mean()
logger.info(
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {}, lr: {}".
format(epoch, args.num_train_epochs, step, train_dataloader_len,
global_step, np.mean(loss.numpy()), optimizer.get_lr()))
loss.backward()
optimizer.step()
optimizer.clear_grad()
# lr_scheduler.step() # Update learning rate schedule
global_step += 1
if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
global_step % args.eval_steps == 0):
# Log metrics
if (paddle.distributed.get_rank() == 0 and args.
evaluate_during_training): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(model, eval_dataloader, logger)
if results['f1'] > best_metirc['f1']:
best_metirc = results
output_dir = os.path.join(args.output_dir,
"checkpoint-best")
os.makedirs(output_dir, exist_ok=True)
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args,
os.path.join(output_dir,
"training_args.bin"))
logger.info("Saving model checkpoint to {}".format(
output_dir))
logger.info("eval results: {}".format(results))
logger.info("best_metirc: {}".format(best_metirc))
if (paddle.distributed.get_rank() == 0 and args.save_steps > 0 and
global_step % args.save_steps == 0):
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-latest")
os.makedirs(output_dir, exist_ok=True)
if paddle.distributed.get_rank() == 0:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to {}".format(
output_dir))
logger.info("best_metirc: {}".format(best_metirc))
if __name__ == "__main__":
args = parse_args()
os.makedirs(args.output_dir, exist_ok=True)
train(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import random
import copy
import logging
import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args
from utils import get_bio_label_maps
from utils import print_arguments
from ppocr.utils.logging import get_logger
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
def train(args):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
print_arguments(args, logger)
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
# dist mode
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
base_model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
model = LayoutXLMForTokenClassification(
base_model, num_classes=len(label2id_map), dropout=None)
# dist mode
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
train_dataset = XFUNDataset(
tokenizer,
data_dir=args.train_data_dir,
label_path=args.train_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
pad_token_label_id=pad_token_label_id,
contains_re=False,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
train_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
args.train_batch_size = args.per_gpu_train_batch_size * max(
1, paddle.distributed.get_world_size())
train_dataloader = paddle.io.DataLoader(
train_dataset,
batch_sampler=train_sampler,
num_workers=0,
use_shared_memory=True,
collate_fn=None, )
t_total = len(train_dataloader) * args.num_train_epochs
# build linear decay with warmup lr sch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=t_total,
end_lr=0.0,
power=1.0)
if args.warmup_steps > 0:
lr_scheduler = paddle.optimizer.lr.LinearWarmup(
lr_scheduler,
args.warmup_steps,
start_lr=0,
end_lr=args.learning_rate, )
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
epsilon=args.adam_epsilon,
weight_decay=args.weight_decay)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d",
args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed) = %d",
args.train_batch_size * paddle.distributed.get_world_size(), )
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss = 0.0
set_seed(args)
best_metrics = None
for epoch_id in range(args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
model.train()
outputs = model(**batch)
# model outputs are always tuple in ppnlp (see doc)
loss = outputs[0]
loss = loss.mean()
logger.info(
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {}, lr: {}".
format(epoch_id, args.num_train_epochs, step,
len(train_dataloader), global_step,
loss.numpy()[0], lr_scheduler.get_lr()))
loss.backward()
tr_loss += loss.item()
optimizer.step()
lr_scheduler.step() # Update learning rate schedule
optimizer.clear_grad()
global_step += 1
if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
global_step % args.eval_steps == 0):
# Log metrics
# Only evaluate when single GPU otherwise metrics may not average well
if paddle.distributed.get_rank(
) == 0 and args.evaluate_during_training:
results, _ = evaluate(args, model, tokenizer, label2id_map,
id2label_map, pad_token_label_id,
logger)
if best_metrics is None or results["f1"] >= best_metrics[
"f1"]:
best_metrics = copy.deepcopy(results)
output_dir = os.path.join(args.output_dir, "best_model")
os.makedirs(output_dir, exist_ok=True)
if paddle.distributed.get_rank() == 0:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(
args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s",
output_dir)
logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
epoch_id, args.num_train_epochs, step,
len(train_dataloader), results))
if best_metrics is not None:
logger.info("best metrics: {}".format(best_metrics))
if paddle.distributed.get_rank(
) == 0 and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir,
"checkpoint-{}".format(global_step))
os.makedirs(output_dir, exist_ok=True)
if paddle.distributed.get_rank() == 0:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
return global_step, tr_loss / global_step
def evaluate(args,
model,
tokenizer,
label2id_map,
id2label_map,
pad_token_label_id,
logger,
prefix=""):
eval_dataset = XFUNDataset(
tokenizer,
data_dir=args.eval_data_dir,
label_path=args.eval_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
pad_token_label_id=pad_token_label_id,
contains_re=False,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
args.eval_batch_size = args.per_gpu_eval_batch_size * max(
1, paddle.distributed.get_world_size())
eval_dataloader = paddle.io.DataLoader(
eval_dataset,
batch_size=args.eval_batch_size,
num_workers=0,
use_shared_memory=True,
collate_fn=None, )
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
model.eval()
for idx, batch in enumerate(eval_dataloader):
with paddle.no_grad():
outputs = model(**batch)
tmp_eval_loss, logits = outputs[:2]
tmp_eval_loss = tmp_eval_loss.mean()
if paddle.distributed.get_rank() == 0:
logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
preds = logits.numpy()
out_label_ids = batch["labels"].numpy()
else:
preds = np.append(preds, logits.numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, batch["labels"].numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=2)
# label_map = {i: label.upper() for i, label in enumerate(labels)}
out_label_list = [[] for _ in range(out_label_ids.shape[0])]
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
out_label_list[i].append(id2label_map[out_label_ids[i][j]])
preds_list[i].append(id2label_map[preds[i][j]])
results = {
"loss": eval_loss,
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
with open(os.path.join(args.output_dir, "test_gt.txt"), "w") as fout:
for lbl in out_label_list:
for l in lbl:
fout.write(l + "\t")
fout.write("\n")
with open(os.path.join(args.output_dir, "test_pred.txt"), "w") as fout:
for lbl in preds_list:
for l in lbl:
fout.write(l + "\t")
fout.write("\n")
report = classification_report(out_label_list, preds_list)
logger.info("\n" + report)
logger.info("***** Eval results %s *****", prefix)
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results, preds_list
if __name__ == "__main__":
args = parse_args()
train(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import cv2
import random
import numpy as np
import imghdr
from copy import deepcopy
import paddle
from PIL import Image, ImageDraw, ImageFont
def get_bio_label_maps(label_map_path):
with open(label_map_path, "r") as fin:
lines = fin.readlines()
lines = [line.strip() for line in lines]
if "O" not in lines:
lines.insert(0, "O")
labels = []
for line in lines:
if line == "O":
labels.append("O")
else:
labels.append("B-" + line)
labels.append("I-" + line)
label2id_map = {label: idx for idx, label in enumerate(labels)}
id2label_map = {idx: label for idx, label in enumerate(labels)}
return label2id_map, id2label_map
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
def draw_ser_results(image,
ocr_results,
font_path="../../doc/fonts/simfang.ttf",
font_size=18):
np.random.seed(2021)
color = (np.random.permutation(range(255)),
np.random.permutation(range(255)),
np.random.permutation(range(255)))
color_map = {
idx: (color[0][idx], color[1][idx], color[2][idx])
for idx in range(1, 255)
}
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
img_new = image.copy()
draw = ImageDraw.Draw(img_new)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
for ocr_info in ocr_results:
if ocr_info["pred_id"] not in color_map:
continue
color = color_map[ocr_info["pred_id"]]
text = "{}: {}".format(ocr_info["pred"], ocr_info["text"])
draw_box_txt(ocr_info["bbox"], text, draw, font, font_size, color)
img_new = Image.blend(image, img_new, 0.5)
return np.array(img_new)
def draw_box_txt(bbox, text, draw, font, font_size, color):
# draw ocr results outline
bbox = ((bbox[0], bbox[1]), (bbox[2], bbox[3]))
draw.rectangle(bbox, fill=color)
# draw ocr results
start_y = max(0, bbox[0][1] - font_size)
tw = font.getsize(text)[0]
draw.rectangle(
[(bbox[0][0] + 1, start_y), (bbox[0][0] + tw + 1, start_y + font_size)],
fill=(0, 0, 255))
draw.text((bbox[0][0] + 1, start_y), text, fill=(255, 255, 255), font=font)
def draw_re_results(image,
result,
font_path="../../doc/fonts/simfang.ttf",
font_size=18):
np.random.seed(0)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
img_new = image.copy()
draw = ImageDraw.Draw(img_new)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
color_head = (0, 0, 255)
color_tail = (255, 0, 0)
color_line = (0, 255, 0)
for ocr_info_head, ocr_info_tail in result:
draw_box_txt(ocr_info_head["bbox"], ocr_info_head["text"], draw, font,
font_size, color_head)
draw_box_txt(ocr_info_tail["bbox"], ocr_info_tail["text"], draw, font,
font_size, color_tail)
center_head = (
(ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2,
(ocr_info_head['bbox'][1] + ocr_info_head['bbox'][3]) // 2)
center_tail = (
(ocr_info_tail['bbox'][0] + ocr_info_tail['bbox'][2]) // 2,
(ocr_info_tail['bbox'][1] + ocr_info_tail['bbox'][3]) // 2)
draw.line([center_head, center_tail], fill=color_line, width=5)
img_new = Image.blend(image, img_new, 0.5)
return np.array(img_new)
# pad sentences
def pad_sentences(tokenizer,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding with larger size, reshape is carried out
max_seq_len = (
len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [tokenizer.pad_token_id] * difference
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
] * difference
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def split_page(encoded_inputs, max_seq_len=512):
"""
truncate is often used in training process
"""
for key in encoded_inputs:
if key == 'entities':
encoded_inputs[key] = [encoded_inputs[key]]
continue
encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
if encoded_inputs[key].ndim <= 1: # for input_ids, att_mask and so on
encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
else: # for bbox
encoded_inputs[key] = encoded_inputs[key].reshape(
[-1, max_seq_len, 4])
return encoded_inputs
def preprocess(
tokenizer,
ori_img,
ocr_info,
img_size=(224, 224),
pad_token_label_id=-100,
max_seq_len=512,
add_special_ids=False,
return_attention_mask=True, ):
ocr_info = deepcopy(ocr_info)
height = ori_img.shape[0]
width = ori_img.shape[1]
img = cv2.resize(ori_img, img_size).transpose([2, 0, 1]).astype(np.float32)
segment_offset_id = []
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
entities = []
for info in ocr_info:
# x1, y1, x2, y2
bbox = info["bbox"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
if not add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
# for re
entities.append({
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": "O",
})
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
encoded_inputs = {
"input_ids": input_ids_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
"entities": entities
}
encoded_inputs = pad_sentences(
tokenizer,
encoded_inputs,
max_seq_len=max_seq_len,
return_attention_mask=return_attention_mask)
encoded_inputs = split_page(encoded_inputs)
fake_bs = encoded_inputs["input_ids"].shape[0]
encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
[fake_bs] + list(img.shape))
encoded_inputs["segment_offset_id"] = segment_offset_id
return encoded_inputs
def postprocess(attention_mask, preds, id2label_map):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds = np.argmax(preds, axis=2)
preds_list = [[] for _ in range(preds.shape[0])]
# keep batch info
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if attention_mask[i][j] == 1:
preds_list[i].append(id2label_map[preds[i][j]])
return preds_list
def merge_preds_list_with_ocr_info(ocr_info, segment_offset_id, preds_list,
label2id_map_for_draw):
# must ensure the preds_list is generated from the same image
preds = [p for pred in preds_list for p in pred]
id2label_map = dict()
for key in label2id_map_for_draw:
val = label2id_map_for_draw[key]
if key == "O":
id2label_map[val] = key
if key.startswith("B-") or key.startswith("I-"):
id2label_map[val] = key[2:]
else:
id2label_map[val] = key
for idx in range(len(segment_offset_id)):
if idx == 0:
start_id = 0
else:
start_id = segment_offset_id[idx - 1]
end_id = segment_offset_id[idx]
curr_pred = preds[start_id:end_id]
curr_pred = [label2id_map_for_draw[p] for p in curr_pred]
if len(curr_pred) <= 0:
pred_id = 0
else:
counts = np.bincount(curr_pred)
pred_id = np.argmax(counts)
ocr_info[idx]["pred_id"] = int(pred_id)
ocr_info[idx]["pred"] = id2label_map[int(pred_id)]
return ocr_info
def print_arguments(args, logger=None):
print_func = logger.info if logger is not None else print
"""print arguments"""
print_func('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print_func('%s: %s' % (arg, value))
print_func('------------------------------------------------')
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
# yapf: disable
parser.add_argument("--model_name_or_path",
default=None, type=str, required=True,)
parser.add_argument("--re_model_name_or_path",
default=None, type=str, required=False,)
parser.add_argument("--train_data_dir", default=None,
type=str, required=False,)
parser.add_argument("--train_label_path", default=None,
type=str, required=False,)
parser.add_argument("--eval_data_dir", default=None,
type=str, required=False,)
parser.add_argument("--eval_label_path", default=None,
type=str, required=False,)
parser.add_argument("--output_dir", default=None, type=str, required=True,)
parser.add_argument("--max_seq_length", default=512, type=int,)
parser.add_argument("--evaluate_during_training", action="store_true",)
parser.add_argument("--per_gpu_train_batch_size", default=8,
type=int, help="Batch size per GPU/CPU for training.",)
parser.add_argument("--per_gpu_eval_batch_size", default=8,
type=int, help="Batch size per GPU/CPU for eval.",)
parser.add_argument("--learning_rate", default=5e-5,
type=float, help="The initial learning rate for Adam.",)
parser.add_argument("--weight_decay", default=0.0,
type=float, help="Weight decay if we apply some.",)
parser.add_argument("--adam_epsilon", default=1e-8,
type=float, help="Epsilon for Adam optimizer.",)
parser.add_argument("--max_grad_norm", default=1.0,
type=float, help="Max gradient norm.",)
parser.add_argument("--num_train_epochs", default=3, type=int,
help="Total number of training epochs to perform.",)
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.",)
parser.add_argument("--eval_steps", type=int, default=10,
help="eval every X updates steps.",)
parser.add_argument("--save_steps", type=int, default=50,
help="Save checkpoint every X updates steps.",)
parser.add_argument("--seed", type=int, default=2048,
help="random seed for initialization",)
parser.add_argument("--rec_model_dir", default=None, type=str, )
parser.add_argument("--det_model_dir", default=None, type=str, )
parser.add_argument(
"--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, )
parser.add_argument("--infer_imgs", default=None, type=str, required=False)
parser.add_argument("--ocr_json_path", default=None,
type=str, required=False, help="ocr prediction results")
# yapf: enable
args = parser.parse_args()
return args
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import cv2
import numpy as np
import paddle
import copy
from paddle.io import Dataset
__all__ = ["XFUNDataset"]
class XFUNDataset(Dataset):
"""
Example:
print("=====begin to build dataset=====")
from paddlenlp.transformers import LayoutXLMTokenizer
tokenizer = LayoutXLMTokenizer.from_pretrained("/paddle/models/transformers/layoutxlm-base-paddle/")
tok_res = tokenizer.tokenize("Maribyrnong")
# res = tokenizer.convert_ids_to_tokens(val_data["input_ids"][0])
dataset = XfunDatasetForSer(
tokenizer,
data_dir="./zh.val/",
label_path="zh.val/xfun_normalize_val.json",
img_size=(224,224))
print(len(dataset))
data = dataset[0]
print(data.keys())
print("input_ids: ", data["input_ids"])
print("labels: ", data["labels"])
print("token_type_ids: ", data["token_type_ids"])
print("words_list: ", data["words_list"])
print("image shape: ", data["image"].shape)
"""
def __init__(self,
tokenizer,
data_dir,
label_path,
contains_re=False,
label2id_map=None,
img_size=(224, 224),
pad_token_label_id=None,
add_special_ids=False,
return_attention_mask=True,
load_mode='all',
max_seq_len=512):
super().__init__()
self.tokenizer = tokenizer
self.data_dir = data_dir
self.label_path = label_path
self.contains_re = contains_re
self.label2id_map = label2id_map
self.img_size = img_size
self.pad_token_label_id = pad_token_label_id
self.add_special_ids = add_special_ids
self.return_attention_mask = return_attention_mask
self.load_mode = load_mode
self.max_seq_len = max_seq_len
if self.pad_token_label_id is None:
self.pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
self.all_lines = self.read_all_lines()
self.entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2}
self.return_keys = {
'bbox': 'np',
'input_ids': 'np',
'labels': 'np',
'attention_mask': 'np',
'image': 'np',
'token_type_ids': 'np',
'entities': 'dict',
'relations': 'dict',
}
if load_mode == "all":
self.encoded_inputs_all = self._parse_label_file_all()
def pad_sentences(self,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
truncation_strategy="longest_first",
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if self.tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[self.tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [self.tokenizer.pad_token_id] * difference
encoded_inputs["labels"] = encoded_inputs[
"labels"] + [self.pad_token_label_id] * difference
encoded_inputs["bbox"] = encoded_inputs[
"bbox"] + [[0, 0, 0, 0]] * difference
elif self.tokenizer.padding_side == 'left':
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + [
1
] * len(encoded_inputs["input_ids"])
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
[self.tokenizer.pad_token_type_id] * difference +
encoded_inputs["token_type_ids"])
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = [
1
] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs["input_ids"] = [
self.tokenizer.pad_token_id
] * difference + encoded_inputs["input_ids"]
encoded_inputs["labels"] = [
self.pad_token_label_id
] * difference + encoded_inputs["labels"]
encoded_inputs["bbox"] = [
[0, 0, 0, 0]
] * difference + encoded_inputs["bbox"]
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def truncate_inputs(self, encoded_inputs, max_seq_len=512):
for key in encoded_inputs:
if key == "sample_id":
continue
length = min(len(encoded_inputs[key]), max_seq_len)
encoded_inputs[key] = encoded_inputs[key][:length]
return encoded_inputs
def read_all_lines(self, ):
with open(self.label_path, "r") as fin:
lines = fin.readlines()
return lines
def _parse_label_file_all(self):
"""
parse all samples
"""
encoded_inputs_all = []
for line in self.all_lines:
encoded_inputs_all.extend(self._parse_label_file(line))
return encoded_inputs_all
def _parse_label_file(self, line):
"""
parse single sample
"""
image_name, info_str = line.split("\t")
image_path = os.path.join(self.data_dir, image_name)
def add_imgge_path(x):
x['image_path'] = image_path
return x
encoded_inputs = self._read_encoded_inputs_sample(info_str)
if self.contains_re:
encoded_inputs = self._chunk_re(encoded_inputs)
else:
encoded_inputs = self._chunk_ser(encoded_inputs)
encoded_inputs = list(map(add_imgge_path, encoded_inputs))
return encoded_inputs
def _read_encoded_inputs_sample(self, info_str):
"""
parse label info
"""
# read text info
info_dict = json.loads(info_str)
height = info_dict["height"]
width = info_dict["width"]
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
gt_label_list = []
if self.contains_re:
# for re
entities = []
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
for info in info_dict["ocr_info"]:
if self.contains_re:
# for re
if len(info["text"]) == 0:
empty_entity.add(info["id"])
continue
id2label[info["id"]] = info["label"]
relations.extend([tuple(sorted(l)) for l in info["linking"]])
# x1, y1, x2, y2
bbox = info["bbox"]
label = info["label"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
gt_label = []
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:
-1]
if label.lower() == "other":
gt_label.extend([0] * len(encode_res["input_ids"]))
else:
gt_label.append(self.label2id_map[("b-" + label).upper()])
gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
(len(encode_res["input_ids"]) - 1))
if self.contains_re:
if gt_label[0] != self.label2id_map["O"]:
entity_id_to_index_map[info["id"]] = len(entities)
entities.append({
"start": len(input_ids_list),
"end":
len(input_ids_list) + len(encode_res["input_ids"]),
"label": label.upper(),
})
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
gt_label_list.extend(gt_label)
words_list.append(text)
encoded_inputs = {
"input_ids": input_ids_list,
"labels": gt_label_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
# "words_list": words_list,
}
encoded_inputs = self.pad_sentences(
encoded_inputs,
max_seq_len=self.max_seq_len,
return_attention_mask=self.return_attention_mask)
encoded_inputs = self.truncate_inputs(encoded_inputs)
if self.contains_re:
relations = self._relations(entities, relations, id2label,
empty_entity, entity_id_to_index_map)
encoded_inputs['relations'] = relations
encoded_inputs['entities'] = entities
return encoded_inputs
def _chunk_ser(self, encoded_inputs):
encoded_inputs_all = []
seq_len = len(encoded_inputs['input_ids'])
chunk_size = 512
for chunk_id, index in enumerate(range(0, seq_len, chunk_size)):
chunk_beg = index
chunk_end = min(index + chunk_size, seq_len)
encoded_inputs_example = {}
for key in encoded_inputs:
encoded_inputs_example[key] = encoded_inputs[key][chunk_beg:
chunk_end]
encoded_inputs_all.append(encoded_inputs_example)
return encoded_inputs_all
def _chunk_re(self, encoded_inputs):
# prepare data
entities = encoded_inputs.pop('entities')
relations = encoded_inputs.pop('relations')
encoded_inputs_all = []
chunk_size = 512
for chunk_id, index in enumerate(
range(0, len(encoded_inputs["input_ids"]), chunk_size)):
item = {}
for k in encoded_inputs:
item[k] = encoded_inputs[k][index:index + chunk_size]
# select entity in current chunk
entities_in_this_span = []
global_to_local_map = {} #
for entity_id, entity in enumerate(entities):
if (index <= entity["start"] < index + chunk_size and
index <= entity["end"] < index + chunk_size):
entity["start"] = entity["start"] - index
entity["end"] = entity["end"] - index
global_to_local_map[entity_id] = len(entities_in_this_span)
entities_in_this_span.append(entity)
# select relations in current chunk
relations_in_this_span = []
for relation in relations:
if (index <= relation["start_index"] < index + chunk_size and
index <= relation["end_index"] < index + chunk_size):
relations_in_this_span.append({
"head": global_to_local_map[relation["head"]],
"tail": global_to_local_map[relation["tail"]],
"start_index": relation["start_index"] - index,
"end_index": relation["end_index"] - index,
})
item.update({
"entities": reformat(entities_in_this_span),
"relations": reformat(relations_in_this_span),
})
item['entities']['label'] = [
self.entities_labels[x] for x in item['entities']['label']
]
encoded_inputs_all.append(item)
return encoded_inputs_all
def _relations(self, entities, relations, id2label, empty_entity,
entity_id_to_index_map):
"""
build relations
"""
relations = list(set(relations))
relations = [
rel for rel in relations
if rel[0] not in empty_entity and rel[1] not in empty_entity
]
kv_relations = []
for rel in relations:
pair = [id2label[rel[0]], id2label[rel[1]]]
if pair == ["question", "answer"]:
kv_relations.append({
"head": entity_id_to_index_map[rel[0]],
"tail": entity_id_to_index_map[rel[1]]
})
elif pair == ["answer", "question"]:
kv_relations.append({
"head": entity_id_to_index_map[rel[1]],
"tail": entity_id_to_index_map[rel[0]]
})
else:
continue
relations = sorted(
[{
"head": rel["head"],
"tail": rel["tail"],
"start_index": get_relation_span(rel, entities)[0],
"end_index": get_relation_span(rel, entities)[1],
} for rel in kv_relations],
key=lambda x: x["head"], )
return relations
def load_img(self, image_path):
# read img
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
resize_h, resize_w = self.img_size
im_shape = img.shape[0:2]
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
img_new = cv2.resize(
img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=2)
mean = np.array([0.485, 0.456, 0.406])[np.newaxis, np.newaxis, :]
std = np.array([0.229, 0.224, 0.225])[np.newaxis, np.newaxis, :]
img_new = img_new / 255.0
img_new -= mean
img_new /= std
img = img_new.transpose((2, 0, 1))
return img
def __getitem__(self, idx):
if self.load_mode == "all":
data = copy.deepcopy(self.encoded_inputs_all[idx])
else:
data = self._parse_label_file(self.all_lines[idx])[0]
image_path = data.pop('image_path')
data["image"] = self.load_img(image_path)
return_data = {}
for k, v in data.items():
if k in self.return_keys:
if self.return_keys[k] == 'np':
v = np.array(v)
return_data[k] = v
return return_data
def __len__(self, ):
if self.load_mode == "all":
return len(self.encoded_inputs_all)
else:
return len(self.all_lines)
def get_relation_span(rel, entities):
bound = []
for entity_index in [rel["head"], rel["tail"]]:
bound.append(entities[entity_index]["start"])
bound.append(entities[entity_index]["end"])
return min(bound), max(bound)
def reformat(data):
new_data = {}
for item in data:
for k, v in item.items():
if k not in new_data:
new_data[k] = []
new_data[k].append(v)
return new_data
===========================train_params=========================== ===========================train_params===========================
model_name:PPOCRv2_ocr_det model_name:PPOCRv2_det
python:python3.7 python:python3.7
gpu_list:0|0,1 gpu_list:0|0,1
Global.use_gpu:True|True Global.use_gpu:True|True
...@@ -26,7 +26,7 @@ null:null ...@@ -26,7 +26,7 @@ null:null
## ##
===========================infer_params=========================== ===========================infer_params===========================
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.pretrained_model: Global.checkpoints:
norm_export:null norm_export:null
quant_export:deploy/slim/quantization/export_model.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml -o quant_export:deploy/slim/quantization/export_model.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml -o
fpgm_export: fpgm_export:
......
...@@ -6,7 +6,7 @@ Global.use_gpu:True|True ...@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:fp32 Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=128
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
...@@ -34,7 +34,7 @@ distill_export:null ...@@ -34,7 +34,7 @@ distill_export:null
export1:null export1:null
export2:null export2:null
inference_dir:Student inference_dir:Student
infer_model:./inference/ch_PP-OCRv2_rec_infer/ infer_model:./inference/ch_PP-OCRv2_rec_infer
infer_export:null infer_export:null
infer_quant:False infer_quant:False
inference:tools/infer/predict_rec.py inference:tools/infer/predict_rec.py
...@@ -45,7 +45,7 @@ inference:tools/infer/predict_rec.py ...@@ -45,7 +45,7 @@ inference:tools/infer/predict_rec.py
--use_tensorrt:False|True --use_tensorrt:False|True
--precision:fp32|fp16|int8 --precision:fp32|fp16|int8
--rec_model_dir: --rec_model_dir:
--image_dir:/inference/rec_inference --image_dir:./inference/rec_inference
null:null null:null
--benchmark:True --benchmark:True
null:null null:null
......
...@@ -6,15 +6,15 @@ Global.use_gpu:True|True ...@@ -6,15 +6,15 @@ Global.use_gpu:True|True
Global.auto_cast:fp32 Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=128
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
null:null null:null
## ##
trainer:pact_train trainer:pact_train
norm_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ch_PP-OCRv2_rec/ch_PP-OCRv2_rec_distillation.yml -o norm_train:null
pact_train:null pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ch_PP-OCRv2_rec/ch_PP-OCRv2_rec_distillation.yml -o
fpgm_train:null fpgm_train:null
distill_train:null distill_train:null
null:null null:null
...@@ -27,14 +27,14 @@ null:null ...@@ -27,14 +27,14 @@ null:null
===========================infer_params=========================== ===========================infer_params===========================
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.pretrained_model: Global.pretrained_model:
norm_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/ch_PP-OCRv2_rec/ch_PP-OCRv2_rec_distillation.yml -o norm_export:null
quant_export: quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/ch_PP-OCRv2_rec/ch_PP-OCRv2_rec_distillation.yml -o
fpgm_export: fpgm_export: null
distill_export:null distill_export:null
export1:null export1:null
export2:null export2:null
inference_dir:Student inference_dir:Student
infer_model:./inference/ch_PP-OCRv2_rec_infer/ infer_model:./inference/ch_PP-OCRv2_rec_infer
infer_export:null infer_export:null
infer_quant:True infer_quant:True
inference:tools/infer/predict_rec.py inference:tools/infer/predict_rec.py
...@@ -45,7 +45,7 @@ inference:tools/infer/predict_rec.py ...@@ -45,7 +45,7 @@ inference:tools/infer/predict_rec.py
--use_tensorrt:False|True --use_tensorrt:False|True
--precision:fp32|fp16|int8 --precision:fp32|fp16|int8
--rec_model_dir: --rec_model_dir:
--image_dir:/inference/rec_inference --image_dir:./inference/rec_inference
null:null null:null
--benchmark:True --benchmark:True
null:null null:null
......
...@@ -4,7 +4,7 @@ python:python3.7 ...@@ -4,7 +4,7 @@ python:python3.7
gpu_list:0|0,1 gpu_list:0|0,1
Global.use_gpu:True|True Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=100|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null Global.pretrained_model:null
......
...@@ -4,7 +4,7 @@ python:python3.7 ...@@ -4,7 +4,7 @@ python:python3.7
gpu_list:0|0,1 gpu_list:0|0,1
Global.use_gpu:True|True Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=20|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null Global.pretrained_model:null
...@@ -26,7 +26,7 @@ null:null ...@@ -26,7 +26,7 @@ null:null
## ##
===========================infer_params=========================== ===========================infer_params===========================
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.pretrained_model: Global.checkpoints:
norm_export:null norm_export:null
quant_export:deploy/slim/quantization/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o quant_export:deploy/slim/quantization/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
fpgm_export:null fpgm_export:null
...@@ -48,4 +48,4 @@ inference:tools/infer/predict_det.py ...@@ -48,4 +48,4 @@ inference:tools/infer/predict_det.py
--image_dir:./inference/ch_det_data_50/all-sum-510/ --image_dir:./inference/ch_det_data_50/all-sum-510/
null:null null:null
--benchmark:True --benchmark:True
null:null null:null
\ No newline at end of file
...@@ -28,7 +28,7 @@ null:null ...@@ -28,7 +28,7 @@ null:null
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.checkpoints: Global.checkpoints:
norm_export:null norm_export:null
quant_export:deploy/slim/quantization/export_model.py -ctest_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
export1:null export1:null
......
...@@ -12,22 +12,22 @@ train_model_name:latest ...@@ -12,22 +12,22 @@ train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/ train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null null:null
## ##
trainer:norm_train|pact_train|fpgm_export trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/ppocr_det_server/det_r50_vd_db.yml -o norm_train:tools/train.py -c test_tipc/configs/ch_ppocr_server_v2.0_det/det_r50_vd_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/ppocr_det_server/det_r50_vd_db.yml -o quant_train:null
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/ppocr_det_server/det_r50_vd_db.yml -o fpgm_train:null
distill_train:null distill_train:null
null:null null:null
null:null null:null
## ##
===========================eval_params=========================== ===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/ppocr_det_server/det_r50_vd_db.yml -o eval:tools/eval.py -c test_tipc/configs/ch_ppocr_server_v2.0_det/det_r50_vd_db.yml -o
null:null null:null
## ##
===========================infer_params=========================== ===========================infer_params===========================
Global.save_inference_dir:./output/ Global.save_inference_dir:./output/
Global.pretrained_model: Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/ppocr_det_server/det_r50_vd_db.yml -o norm_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_det/det_r50_vd_db.yml -o
quant_export:null quant_export:null
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
......
...@@ -35,7 +35,7 @@ export1:null ...@@ -35,7 +35,7 @@ export1:null
export2:null export2:null
## ##
train_model:./inference/det_r50_vd_pse/best_accuracy train_model:./inference/det_r50_vd_pse/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o infer_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
infer_quant:False infer_quant:False
inference:tools/infer/predict_det.py inference:tools/infer/predict_det.py
--use_gpu:True|False --use_gpu:True|False
......
...@@ -62,7 +62,7 @@ Train: ...@@ -62,7 +62,7 @@ Train:
data_dir: ./train_data/icdar2015/text_localization/ data_dir: ./train_data/icdar2015/text_localization/
label_file_list: label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [0.1, 0.45, 0.3, 0.15] ratio_list: [1.0]
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
img_mode: BGR img_mode: BGR
......
...@@ -48,4 +48,4 @@ inference:tools/infer/predict_det.py ...@@ -48,4 +48,4 @@ inference:tools/infer/predict_det.py
--image_dir:./inference/ch_det_data_50/all-sum-510/ --image_dir:./inference/ch_det_data_50/all-sum-510/
null:null null:null
--benchmark:True --benchmark:True
null:null --det_algorithm:SAST
...@@ -48,4 +48,4 @@ inference:tools/infer/predict_det.py ...@@ -48,4 +48,4 @@ inference:tools/infer/predict_det.py
--image_dir:./inference/ch_det_data_50/all-sum-510/ --image_dir:./inference/ch_det_data_50/all-sum-510/
null:null null:null
--benchmark:True --benchmark:True
null:null --det_algorithm:SAST
...@@ -42,7 +42,7 @@ inference:tools/infer/predict_e2e.py ...@@ -42,7 +42,7 @@ inference:tools/infer/predict_e2e.py
--enable_mkldnn:True|False --enable_mkldnn:True|False
--cpu_threads:1|6 --cpu_threads:1|6
--rec_batch_num:1 --rec_batch_num:1
--use_tensorrt:False|True --use_tensorrt:False
--precision:fp32|fp16|int8 --precision:fp32|fp16|int8
--e2e_model_dir: --e2e_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/ --image_dir:./inference/ch_det_data_50/all-sum-510/
......
...@@ -6,7 +6,7 @@ Global.use_gpu:True|True ...@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
......
...@@ -6,7 +6,7 @@ Global.use_gpu:True|True ...@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
......
...@@ -37,7 +37,7 @@ export2:null ...@@ -37,7 +37,7 @@ export2:null
infer_model:null infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="StarNet"
--use_gpu:True|False --use_gpu:True|False
--enable_mkldnn:True|False --enable_mkldnn:True|False
--cpu_threads:1|6 --cpu_threads:1|6
......
...@@ -6,7 +6,7 @@ Global.use_gpu:True|True ...@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
......
...@@ -6,7 +6,7 @@ Global.use_gpu:True|True ...@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
......
...@@ -37,7 +37,7 @@ export2:null ...@@ -37,7 +37,7 @@ export2:null
infer_model:null infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="StarNet"
--use_gpu:True|False --use_gpu:True|False
--enable_mkldnn:True|False --enable_mkldnn:True|False
--cpu_threads:1|6 --cpu_threads:1|6
......
...@@ -6,7 +6,7 @@ Global.use_gpu:True|True ...@@ -6,7 +6,7 @@ Global.use_gpu:True|True
Global.auto_cast:null Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128 Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64
Global.pretrained_model:null Global.pretrained_model:null
train_model_name:latest train_model_name:latest
train_infer_img_dir:./inference/rec_inference train_infer_img_dir:./inference/rec_inference
......
...@@ -25,7 +25,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then ...@@ -25,7 +25,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
# pretrain lite train data # pretrain lite train data
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
if [ ${model_name} == "ch_PPOCRv2_det" ]; then if [[ ${model_name} =~ "PPOCRv2_det" ]];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../ cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
fi fi
...@@ -49,8 +49,8 @@ if [ ${MODE} = "lite_train_lite_infer" ];then ...@@ -49,8 +49,8 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
fi fi
if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ] || [ ${model_name} == "det_r50_vd_sast_totaltext_v2.0" ]; then if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ] || [ ${model_name} == "det_r50_vd_sast_totaltext_v2.0" ]; then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
wget -nc -P ./train_data/ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text && cd ../ cd ./train_data && tar xf total_text_lite.tar && ln -s total_text_lite total_text && cd ../
fi fi
if [ ${model_name} == "det_mv3_db_v2.0" ]; then if [ ${model_name} == "det_mv3_db_v2.0" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
...@@ -78,15 +78,15 @@ elif [ ${MODE} = "whole_train_whole_infer" ];then ...@@ -78,15 +78,15 @@ elif [ ${MODE} = "whole_train_whole_infer" ];then
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../ cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
fi fi
if [ ${model_name} == "en_server_pgnetA" ]; then if [ ${model_name} == "en_server_pgnetA" ]; then
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/total_text.tar --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate
cd ./pretrain_models/ && tar xf en_server_pgnetA.tar && cd ../ cd ./pretrain_models/ && tar xf en_server_pgnetA.tar && cd ../
cd ./train_data && tar xf total_text.tar && ln -s total_text && cd ../ cd ./train_data && tar xf total_text.tar && ln -s total_text_lite total_text && cd ../
fi fi
if [ ${model_name} == "det_r50_vd_sast_totaltext_v2.0" ]; then if [ ${model_name} == "det_r50_vd_sast_totaltext_v2.0" ]; then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/total_text.tar --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
cd ./train_data && tar xf total_text.tar && ln -s total_text && cd ../ cd ./train_data && tar xf total_text.tar && ln -s total_text_lite total_text && cd ../
fi fi
elif [ ${MODE} = "lite_train_whole_infer" ];then elif [ ${MODE} = "lite_train_whole_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
...@@ -103,59 +103,67 @@ elif [ ${MODE} = "lite_train_whole_infer" ];then ...@@ -103,59 +103,67 @@ elif [ ${MODE} = "lite_train_whole_infer" ];then
fi fi
elif [ ${MODE} = "whole_infer" ];then elif [ ${MODE} = "whole_infer" ];then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
cd ./inference && tar xf rec_inference.tar && cd ../
if [ ${model_name} = "ch_ppocr_mobile_v2.0_det" ]; then if [ ${model_name} = "ch_ppocr_mobile_v2.0_det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_train" eval_model_name="ch_ppocr_mobile_v2.0_det_train"
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && cd ../
elif [ ${model_name} = "ch_ppocr_server_v2.0_det" ]; then elif [ ${model_name} = "ch_ppocr_server_v2.0_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ch_ppocr_mobile_v2.0" ]; then elif [ ${model_name} = "ch_ppocr_mobile_v2.0" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ch_ppocr_server_v2.0" ]; then elif [ ${model_name} = "ch_ppocr_server_v2.0" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec" ]; then elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer" eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
elif [ ${model_name} = "ch_ppocr_server_v2.0_rec" ]; then elif [ ${model_name} = "ch_ppocr_server_v2.0_rec" ]; then
eval_model_name="ch_ppocr_server_v2.0_rec_infer" eval_model_name="ch_ppocr_server_v2.0_rec_infer"
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec_PACT" ]; then
eval_model_name="ch_PP-OCRv2_rec_slim_quant_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec_FPGM" ]; then
eval_model_name="ch_PP-OCRv2_rec_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
fi fi
if [ ${model_name} = "ch_PPOCRv2_det" ]; then if [[ ${model_name} =~ "ch_PPOCRv2_det" ]]; then
eval_model_name="ch_PP-OCRv2_det_infer" eval_model_name="ch_PP-OCRv2_det_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
if [[ ${model_name} =~ "PPOCRv2_ocr_rec" ]]; then
eval_model_name="ch_PP-OCRv2_rec_infer"
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar --no-check-certificate
cd ./inference && tar xf ${eval_model_name}.tar && cd ../
fi
if [ ${model_name} == "en_server_pgnetA" ]; then if [ ${model_name} == "en_server_pgnetA" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate
cd ./inference && tar xf en_server_pgnetA.tar && cd ../ cd ./inference && tar xf en_server_pgnetA.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ]; then if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar --no-check-certificate
cd ./inference/ && tar xf det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../ cd ./inference/ && tar xf det_r50_vd_sast_icdar15_v2.0_train.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
if [ ${model_name} == "det_mv3_db_v2.0" ]; then if [ ${model_name} == "det_mv3_db_v2.0" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
cd ./inference/ && tar xf det_mv3_db_v2.0_train.tar && cd ../ cd ./inference/ && tar xf det_mv3_db_v2.0_train.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
if [ ${model_name} == "det_r50_db_v2.0" ]; then if [ ${model_name} == "det_r50_db_v2.0" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar --no-check-certificate
cd ./inference/ && tar xf det_r50_vd_db_v2.0_train.tar && cd ../ cd ./inference/ && tar xf det_r50_vd_db_v2.0_train.tar && tar xf ch_det_data_50.tar && cd ../
fi fi
fi fi
if [ ${MODE} = "klquant_whole_infer" ]; then if [ ${MODE} = "klquant_whole_infer" ]; then
......
...@@ -64,10 +64,11 @@ function func_cpp_inference(){ ...@@ -64,10 +64,11 @@ function func_cpp_inference(){
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_mkldnn=$(func_set_params "${cpp_use_mkldnn_key}" "${use_mkldnn}")
set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}") set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command eval $command
last_status=${PIPESTATUS[0]} last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}" eval "cat ${_save_log_path}"
......
...@@ -79,11 +79,12 @@ function func_inference(){ ...@@ -79,11 +79,12 @@ function func_inference(){
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params0=$(func_set_params "${rec_model_key}" "${rec_model_value}") set_infer_params0=$(func_set_params "${rec_model_key}" "${rec_model_value}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 " command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command eval $command
last_status=${PIPESTATUS[0]} last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}" eval "cat ${_save_log_path}"
......
...@@ -160,11 +160,12 @@ function func_inference(){ ...@@ -160,11 +160,12 @@ function func_inference(){
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}") set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 " command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command eval $command
last_status=${PIPESTATUS[0]} last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}" eval "cat ${_save_log_path}"
...@@ -321,10 +322,6 @@ else ...@@ -321,10 +322,6 @@ else
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}" save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
fi fi
# load pretrain from norm training if current trainer is pact or fpgm trainer
if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
set_pretrain="${load_norm_train_model}"
fi
set_save_model=$(func_set_params "${save_model_key}" "${save_log}") set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
...@@ -340,10 +337,7 @@ else ...@@ -340,10 +337,7 @@ else
status_check $? "${cmd}" "${status_log}" status_check $? "${cmd}" "${status_log}"
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
load_norm_train_model=${set_eval_pretrain}
fi
# run eval # run eval
if [ ${eval_py} != "null" ]; then if [ ${eval_py} != "null" ]; then
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
......
...@@ -195,6 +195,7 @@ def create_predictor(args, mode, logger): ...@@ -195,6 +195,7 @@ def create_predictor(args, mode, logger):
max_batch_size=args.max_batch_size, max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size) min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph # skip the minmum trt subgraph
use_dynamic_shape = True
if mode == "det": if mode == "det":
min_input_shape = { min_input_shape = {
"x": [1, 3, 50, 50], "x": [1, 3, 50, 50],
...@@ -260,6 +261,8 @@ def create_predictor(args, mode, logger): ...@@ -260,6 +261,8 @@ def create_predictor(args, mode, logger):
max_input_shape.update(max_pact_shape) max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape) opt_input_shape.update(opt_pact_shape)
elif mode == "rec": elif mode == "rec":
if args.rec_algorithm != "CRNN":
use_dynamic_shape = False
min_input_shape = {"x": [1, 3, 32, 10]} min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]} max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]} opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
...@@ -268,11 +271,10 @@ def create_predictor(args, mode, logger): ...@@ -268,11 +271,10 @@ def create_predictor(args, mode, logger):
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]} max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]} opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else: else:
min_input_shape = {"x": [1, 3, 10, 10]} use_dynamic_shape = False
max_input_shape = {"x": [1, 3, 512, 512]} if use_dynamic_shape:
opt_input_shape = {"x": [1, 3, 256, 256]} config.set_trt_dynamic_shape_info(
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, min_input_shape, max_input_shape, opt_input_shape)
opt_input_shape)
else: else:
config.disable_gpu() config.disable_gpu()
...@@ -311,7 +313,10 @@ def create_predictor(args, mode, logger): ...@@ -311,7 +313,10 @@ def create_predictor(args, mode, logger):
def get_infer_gpuid(): def get_infer_gpuid():
cmd = "env | grep CUDA_VISIBLE_DEVICES" if not paddle.fluid.core.is_compiled_with_rocm():
cmd = "env | grep CUDA_VISIBLE_DEVICES"
else:
cmd = "env | grep HIP_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines() env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0: if len(env_cuda) == 0:
return 0 return 0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册