Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`.
After running, the excel sheet of each picture will be saved in the directory specified by the output field
...
...
@@ -51,11 +54,14 @@ After running, the excel sheet of each picture will be saved in the directory sp
In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents
#### data preparation
The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。
#### data preparation
The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。
#### Start training
#### Start training
*If you are installing the cpu version of paddle, please modify the `use_gpu` field in the configuration file to false*
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows: