提交 4b214948 编写于 作者: z37757's avatar z37757

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into new_branch

此差异已折叠。
......@@ -8,6 +8,10 @@ PPOCRLabel is a semi-automatic graphic annotation tool suitable for OCR field, w
### Recent Update
- 2022.02:(by [PeterH0323](https://github.com/peterh0323)
- Added KIE mode, for [detection + identification + keyword extraction] labeling.
- 2022.01:(by [PeterH0323](https://github.com/peterh0323)
- Improve user experience: prompt for the number of files and labels, optimize interaction, and fix bugs such as only use CPU when inference
- 2021.11.17:
- Support install and start PPOCRLabel through the whl package (by [d2623587501](https://github.com/d2623587501))
- Dataset segmentation: Divide the annotation file into training, verification and testing parts (refer to section 3.5 below, by [MrCuiHao](https://github.com/MrCuiHao))
......@@ -70,14 +74,15 @@ PPOCRLabel
```bash
pip3 install PPOCRLabel
pip3 install opencv-contrib-python-headless==4.2.0.32
PPOCRLabel # run
PPOCRLabel # [Normal mode] for [detection + recognition] labeling
PPOCRLabel --kie True # [KIE mode] for [detection + recognition + keyword extraction] labeling
```
#### 1.2.2 Build and Install the Whl Package Locally
```bash
cd PaddleOCR/PPOCRLabel
python3 setup.py bdist_wheel
python3 setup.py bdist_wheel
pip3 install dist/PPOCRLabel-1.0.2-py2.py3-none-any.whl
```
......@@ -85,7 +90,8 @@ pip3 install dist/PPOCRLabel-1.0.2-py2.py3-none-any.whl
```bash
cd ./PPOCRLabel # Switch to the PPOCRLabel directory
python PPOCRLabel.py
python PPOCRLabel.py # [Normal mode] for [detection + recognition] labeling
python PPOCRLabel.py --kie True # [KIE mode] for [detection + recognition + keyword extraction] labeling
```
......@@ -110,7 +116,7 @@ python PPOCRLabel.py
6. Click 're-Recognition', model will rewrite ALL recognition results in ALL detection box<sup>[3]</sup>.
7. Double click the result in 'recognition result' list to manually change inaccurate recognition results.
7. Single click the result in 'recognition result' list to manually change inaccurate recognition results.
8. **Click "Check", the image status will switch to "√",then the program automatically jump to the next.**
......@@ -143,15 +149,17 @@ python PPOCRLabel.py
### 3.1 Shortcut keys
| Shortcut keys | Description |
|--------------------------| ------------------------------------------------ |
|--------------------------|--------------------------------------------------|
| Ctrl + Shift + R | Re-recognize all the labels of the current image |
| W | Create a rect box |
| Q | Create a four-points box |
| X | Rotate the box anti-clockwise |
| C | Rotate the box clockwise |
| Ctrl + E | Edit label of the selected box |
| Ctrl + R | Re-recognize the selected box |
| Ctrl + C | Copy and paste the selected box |
| Ctrl + Left Mouse Button | Multi select the label box |
| Ctrl + X | Delete the selected box |
| Alt + X | Delete the selected box |
| Ctrl + V | Check image |
| Ctrl + Shift + d | Delete image |
| D | Next image |
......@@ -167,7 +175,7 @@ python PPOCRLabel.py
- Model language switching: Changing the built-in model language is supportable by clicking "PaddleOCR"-"Choose OCR Model" in the menu bar. Currently supported languages​include French, German, Korean, and Japanese.
For specific model download links, please refer to [PaddleOCR Model List](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md#multilingual-recognition-modelupdating)
- **Custom Model**: If users want to replace the built-in model with their own inference model, they can follow the [Custom Model Code Usage](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_en/whl_en.md#31-use-by-code) by modifying PPOCRLabel.py for [Instantiation of PaddleOCR class](https://github.com/PaddlePaddle/PaddleOCR/blob/release/ 2.3/PPOCRLabel/PPOCRLabel.py#L116) :
- **Custom Model**: If users want to replace the built-in model with their own inference model, they can follow the [Custom Model Code Usage](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_en/whl_en.md#31-use-by-code) by modifying PPOCRLabel.py for [Instantiation of PaddleOCR class](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/PPOCRLabel/PPOCRLabel.py#L86) :
add parameter `det_model_dir` in `self.ocr = PaddleOCR(use_pdserving=False, use_angle_cls=True, det=True, cls=True, use_gpu=gpu, lang=lang) `
......@@ -194,21 +202,31 @@ For some data that are difficult to recognize, the recognition results will not
- Enter the following command in the terminal to execute the dataset division script:
```
```
cd ./PPOCRLabel # Change the directory to the PPOCRLabel folder
python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --labelRootPath ../train_data/label --detRootPath ../train_data/det --recRootPath ../train_data/rec
python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data
```
Parameter Description:
- `trainValTestRatio` is the division ratio of the number of images in the training set, validation set, and test set, set according to your actual situation, the default is `6:2:2`
- `labelRootPath` is the storage path of the dataset labeled by PPOCRLabel, the default is `../train_data/label`
- `detRootPath` is the path where the text detection dataset is divided according to the dataset marked by PPOCRLabel. The default is `../train_data/det`
- `recRootPath` is the path where the character recognition dataset is divided according to the dataset marked by PPOCRLabel. The default is `../train_data/rec`
- `datasetRootPath` is the storage path of the complete dataset labeled by PPOCRLabel. The default path is `PaddleOCR/train_data` .
```
|-train_data
|-crop_img
|- word_001_crop_0.png
|- word_002_crop_0.jpg
|- word_003_crop_0.jpg
| ...
| Label.txt
| rec_gt.txt
|- word_001.png
|- word_002.jpg
|- word_003.jpg
| ...
```
### 3.6 Error message
- If paddleocr is installed with whl, it has a higher priority than calling PaddleOCR class with paddleocr.py, which may cause an exception if whl package is not updated.
......@@ -231,4 +249,4 @@ For some data that are difficult to recognize, the recognition results will not
### 4. Related
1.[Tzutalin. LabelImg. Git code (2015)](https://github.com/tzutalin/labelImg)
\ No newline at end of file
1.[Tzutalin. LabelImg. Git code (2015)](https://github.com/tzutalin/labelImg)
......@@ -8,6 +8,10 @@ PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置P
#### 近期更新
- 2022.02:(by [PeterH0323](https://github.com/peterh0323)
- 新增:KIE 功能,用于打【检测+识别+关键字提取】的标签
- 2022.01:(by [PeterH0323](https://github.com/peterh0323)
- 提升用户体验:新增文件与标记数目提示、优化交互、修复gpu使用等问题
- 2021.11.17:
- 新增支持通过whl包安装和启动PPOCRLabel(by [d2623587501](https://github.com/d2623587501)
- 标注数据集切分:对标注数据进行训练、验证与测试集划分(参考下方3.5节,by [MrCuiHao](https://github.com/MrCuiHao)
......@@ -24,7 +28,7 @@ PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置P
- 识别结果更改为单击修改。(如果无法修改,请切换为系统自带输入法,或再次切回原输入法)
- 2020.12.18: 支持对单个标记框进行重新识别(by [ninetailskim](https://github.com/ninetailskim)),完善快捷键。
如果您对以上内容感兴趣或对完善工具有不一样的想法,欢迎加入我们的SIG队伍与我们共同开发。可以在[此处](https://github.com/PaddlePaddle/PaddleOCR/issues/1728)完成问卷和前置任务,经过我们确认相关内容后即可正式加入,享受SIG福利,共同为OCR开源事业贡献(特别说明:针对PPOCRLabel的改进也属于PaddleOCR前置任务)
如果您对完善工具有不一样的想法,欢迎通过[社区常规赛](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)报名相关更改,获得积分兑换奖励。
......@@ -68,7 +72,8 @@ PPOCRLabel --lang ch
```bash
pip3 install PPOCRLabel
pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添加"-i https://mirror.baidu.com/pypi/simple"
PPOCRLabel --lang ch # 启动
PPOCRLabel --lang ch # 启动【普通模式】,用于打【检测+识别】场景的标签
PPOCRLabel --lang ch --kie True # 启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签
```
> 如果上述安装出现问题,可以参考3.6节 错误提示
......@@ -87,7 +92,8 @@ pip3 install dist/PPOCRLabel-1.0.2-py2.py3-none-any.whl -i https://mirror.baidu.
```bash
cd ./PPOCRLabel # 切换到PPOCRLabel目录
python PPOCRLabel.py --lang ch
python PPOCRLabel.py --lang ch # 启动【普通模式】,用于打【检测+识别】场景的标签
python PPOCRLabel.py --lang ch --kie True # 启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签
```
......@@ -102,7 +108,7 @@ python PPOCRLabel.py --lang ch
4. 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动绘制标记框。点击键盘Q,则使用四点标注模式(或点击“编辑” - “四点标注”),用户依次点击4个点后,双击左键表示标注完成。
5. 标记框绘制完成后,用户点击 “确认”,检测框会先被预分配一个 “待识别” 标签。
6. 重新识别:将图片中的所有检测画绘制/调整完成后,点击 “重新识别”,PPOCR模型会对当前图片中的**所有检测框**重新识别<sup>[3]</sup>
7. 内容更改:击识别结果,对不准确的识别结果进行手动更改。
7. 内容更改:击识别结果,对不准确的识别结果进行手动更改。
8. **确认标记:点击 “确认”,图片状态切换为 “√”,跳转至下一张。**
9. 删除:点击 “删除图像”,图片将会被删除至回收站。
10. 导出结果:用户可以通过菜单中“文件-导出标记结果”手动导出,同时也可以点击“文件 - 自动导出标记结果”开启自动导出。手动确认过的标记将会被存放在所打开图片文件夹下的*Label.txt*中。在菜单栏点击 “文件” - "导出识别结果"后,会将此类图片的识别训练数据保存在*crop_img*文件夹下,识别标签保存在*rec_gt.txt*<sup>[4]</sup>
......@@ -131,23 +137,25 @@ python PPOCRLabel.py --lang ch
### 3.1 快捷键
| 快捷键 | 说明 |
|------------------| ---------------------------- |
| Ctrl + shift + R | 对当前图片的所有标记重新识别 |
| W | 新建矩形框 |
| Q | 新建四点框 |
| Ctrl + E | 编辑所选框标签 |
| Ctrl + R | 重新识别所选标记 |
| 快捷键 | 说明 |
|------------------|----------------|
| Ctrl + shift + R | 对当前图片的所有标记重新识别 |
| W | 新建矩形框 |
| Q | 新建四点框 |
| X | 框逆时针旋转 |
| C | 框顺时针旋转 |
| Ctrl + E | 编辑所选框标签 |
| Ctrl + R | 重新识别所选标记 |
| Ctrl + C | 复制并粘贴选中的标记框 |
| Ctrl + 鼠标左键 | 多选标记框 |
| Ctrl + X | 删除所选框 |
| Ctrl + V | 确认本张图片标记 |
| Ctrl + Shift + d | 删除本张图片 |
| D | 下一张图片 |
| A | 上一张图片 |
| Ctrl++ | 缩小 |
| Ctrl-- | 放大 |
| ↑→↓← | 移动标记框 |
| Ctrl + 鼠标左键 | 多选标记框 |
| Alt + X | 删除所选框 |
| Ctrl + V | 确认本张图片标记 |
| Ctrl + Shift + d | 删除本张图片 |
| D | 下一张图片 |
| A | 上一张图片 |
| Ctrl++ | 缩小 |
| Ctrl-- | 放大 |
| ↑→↓← | 移动标记框 |
### 3.2 内置模型
......@@ -181,19 +189,29 @@ PPOCRLabel支持三种导出方式:
```
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --labelRootPath ../train_data/label --detRootPath ../train_data/det --recRootPath ../train_data/rec
python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data
```
参数说明:
- `trainValTestRatio` 是训练集、验证集、测试集的图像数量划分比例,根据实际情况设定,默认是`6:2:2`
- `labelRootPath` 是PPOCRLabel标注的数据集存放路径,默认是`../train_data/label`
- `detRootPath` 是根据PPOCRLabel标注的数据集划分后的文本检测数据集存放的路径,默认是`../train_data/det `
- `recRootPath` 是根据PPOCRLabel标注的数据集划分后的字符识别数据集存放的路径,默认是`../train_data/rec`
- `datasetRootPath` 是PPOCRLabel标注的完整数据集存放路径。默认路径是 `PaddleOCR/train_data` 分割数据集前应有如下结构:
```
|-train_data
|-crop_img
|- word_001_crop_0.png
|- word_002_crop_0.jpg
|- word_003_crop_0.jpg
| ...
| Label.txt
| rec_gt.txt
|- word_001.png
|- word_002.jpg
|- word_003.jpg
| ...
```
### 3.6 错误提示
- 如果同时使用whl包安装了paddleocr,其优先级大于通过paddleocr.py调用PaddleOCR类,whl包未更新时会导致程序异常。
......
# Copyright (c) <2015-Present> Tzutalin
# Copyright (C) 2013 MIT, Computer Science and Artificial Intelligence Laboratory. Bryan Russell, Antonio Torralba,
# William T. Freeman. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
# associated documentation files (the "Software"), to deal in the Software without restriction, including without
# limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
# NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
# SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import sys
try:
from PyQt5.QtWidgets import QWidget, QHBoxLayout, QComboBox
except ImportError:
# needed for py3+qt4
# Ref:
# http://pyqt.sourceforge.net/Docs/PyQt4/incompatible_apis.html
# http://stackoverflow.com/questions/21217399/pyqt4-qtcore-qvariant-object-instead-of-a-string
if sys.version_info.major >= 3:
import sip
sip.setapi('QVariant', 2)
from PyQt4.QtGui import QWidget, QHBoxLayout, QComboBox
class ComboBox(QWidget):
def __init__(self, parent=None, items=[]):
super(ComboBox, self).__init__(parent)
layout = QHBoxLayout()
self.cb = QComboBox()
self.items = items
self.cb.addItems(self.items)
self.cb.currentIndexChanged.connect(parent.comboSelectionChanged)
layout.addWidget(self.cb)
self.setLayout(layout)
def update_items(self, items):
self.items = items
self.cb.clear()
self.cb.addItems(self.items)
......@@ -17,15 +17,14 @@ def isCreateOrDeleteFolder(path, flag):
return flagAbsPath
def splitTrainVal(root, dir, absTrainRootPath, absValRootPath, absTestRootPath, trainTxt, valTxt, testTxt, flag):
def splitTrainVal(root, absTrainRootPath, absValRootPath, absTestRootPath, trainTxt, valTxt, testTxt, flag):
# 按照指定的比例划分训练集、验证集、测试集
labelPath = os.path.join(root, dir)
labelAbsPath = os.path.abspath(labelPath)
dataAbsPath = os.path.abspath(root)
if flag == "det":
labelFilePath = os.path.join(labelAbsPath, args.detLabelFileName)
labelFilePath = os.path.join(dataAbsPath, args.detLabelFileName)
elif flag == "rec":
labelFilePath = os.path.join(labelAbsPath, args.recLabelFileName)
labelFilePath = os.path.join(dataAbsPath, args.recLabelFileName)
labelFileRead = open(labelFilePath, "r", encoding="UTF-8")
labelFileContent = labelFileRead.readlines()
......@@ -38,9 +37,9 @@ def splitTrainVal(root, dir, absTrainRootPath, absValRootPath, absTestRootPath,
imageName = os.path.basename(imageRelativePath)
if flag == "det":
imagePath = os.path.join(labelAbsPath, imageName)
imagePath = os.path.join(dataAbsPath, imageName)
elif flag == "rec":
imagePath = os.path.join(labelAbsPath, "{}\\{}".format(args.recImageDirName, imageName))
imagePath = os.path.join(dataAbsPath, "{}\\{}".format(args.recImageDirName, imageName))
# 按预设的比例划分训练集、验证集、测试集
trainValTestRatio = args.trainValTestRatio.split(":")
......@@ -90,15 +89,20 @@ def genDetRecTrainVal(args):
recValTxt = open(os.path.join(args.recRootPath, "val.txt"), "a", encoding="UTF-8")
recTestTxt = open(os.path.join(args.recRootPath, "test.txt"), "a", encoding="UTF-8")
for root, dirs, files in os.walk(args.labelRootPath):
splitTrainVal(args.datasetRootPath, detAbsTrainRootPath, detAbsValRootPath, detAbsTestRootPath, detTrainTxt, detValTxt,
detTestTxt, "det")
for root, dirs, files in os.walk(args.datasetRootPath):
for dir in dirs:
splitTrainVal(root, dir, detAbsTrainRootPath, detAbsValRootPath, detAbsTestRootPath, detTrainTxt, detValTxt,
detTestTxt, "det")
splitTrainVal(root, dir, recAbsTrainRootPath, recAbsValRootPath, recAbsTestRootPath, recTrainTxt, recValTxt,
recTestTxt, "rec")
if dir == 'crop_img':
splitTrainVal(root, recAbsTrainRootPath, recAbsValRootPath, recAbsTestRootPath, recTrainTxt, recValTxt,
recTestTxt, "rec")
else:
continue
break
if __name__ == "__main__":
# 功能描述:分别划分检测和识别的训练集、验证集、测试集
# 说明:可以根据自己的路径和需求调整参数,图像数据往往多人合作分批标注,每一批图像数据放在一个文件夹内用PPOCRLabel进行标注,
......@@ -110,9 +114,9 @@ if __name__ == "__main__":
default="6:2:2",
help="ratio of trainset:valset:testset")
parser.add_argument(
"--labelRootPath",
"--datasetRootPath",
type=str,
default="../train_data/label",
default="../train_data/",
help="path to the dataset marked by ppocrlabel, E.g, dataset folder named 1,2,3..."
)
parser.add_argument(
......
......@@ -11,19 +11,13 @@
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
try:
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
except ImportError:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
#from PyQt4.QtOpenGL import *
import copy
from PyQt5.QtCore import Qt, pyqtSignal, QPointF, QPoint
from PyQt5.QtGui import QPainter, QBrush, QColor, QPixmap
from PyQt5.QtWidgets import QWidget, QMenu, QApplication
from libs.shape import Shape
from libs.utils import distance
import copy
CURSOR_DEFAULT = Qt.ArrowCursor
CURSOR_POINT = Qt.PointingHandCursor
......@@ -31,8 +25,6 @@ CURSOR_DRAW = Qt.CrossCursor
CURSOR_MOVE = Qt.ClosedHandCursor
CURSOR_GRAB = Qt.OpenHandCursor
# class Canvas(QGLWidget):
class Canvas(QWidget):
zoomRequest = pyqtSignal(int)
......@@ -129,7 +121,6 @@ class Canvas(QWidget):
def selectedVertex(self):
return self.hVertex is not None
def mouseMoveEvent(self, ev):
"""Update line with last point and current coordinates."""
pos = self.transformPos(ev.pos())
......@@ -333,7 +324,6 @@ class Canvas(QWidget):
self.movingShape = False
def endMove(self, copy=False):
assert self.selectedShapes and self.selectedShapesCopy
assert len(self.selectedShapesCopy) == len(self.selectedShapes)
......@@ -410,7 +400,6 @@ class Canvas(QWidget):
self.selectionChanged.emit(shapes)
self.update()
def selectShapePoint(self, point, multiple_selection_mode):
"""Select the first shape created which contains this point."""
if self.selectedVertex(): # A vertex is marked for selection.
......@@ -494,7 +483,6 @@ class Canvas(QWidget):
else:
shape.moveVertexBy(index, shiftPos)
def boundedMoveShape(self, shapes, pos):
if type(shapes).__name__ != 'list': shapes = [shapes]
if self.outOfPixmap(pos):
......@@ -515,6 +503,7 @@ class Canvas(QWidget):
if dp:
for shape in shapes:
shape.moveBy(dp)
shape.close()
self.prevPoint = pos
return True
return False
......@@ -728,6 +717,31 @@ class Canvas(QWidget):
self.moveOnePixel('Up')
elif key == Qt.Key_Down and self.selectedShapes:
self.moveOnePixel('Down')
elif key == Qt.Key_X and self.selectedShapes:
for i in range(len(self.selectedShapes)):
self.selectedShape = self.selectedShapes[i]
if self.rotateOutOfBound(0.01):
continue
self.selectedShape.rotate(0.01)
self.shapeMoved.emit()
self.update()
elif key == Qt.Key_C and self.selectedShapes:
for i in range(len(self.selectedShapes)):
self.selectedShape = self.selectedShapes[i]
if self.rotateOutOfBound(-0.01):
continue
self.selectedShape.rotate(-0.01)
self.shapeMoved.emit()
self.update()
def rotateOutOfBound(self, angle):
for shape in range(len(self.selectedShapes)):
self.selectedShape = self.selectedShapes[shape]
for i, p in enumerate(self.selectedShape.points):
if self.outOfPixmap(self.selectedShape.rotatePoint(p, angle)):
return True
return False
def moveOnePixel(self, direction):
# print(self.selectedShape.points)
......@@ -769,7 +783,7 @@ class Canvas(QWidget):
points = [p1+p2 for p1, p2 in zip(self.selectedShape.points, [step]*4)]
return True in map(self.outOfPixmap, points)
def setLastLabel(self, text, line_color = None, fill_color = None):
def setLastLabel(self, text, line_color=None, fill_color=None, key_cls=None):
assert text
self.shapes[-1].label = text
if line_color:
......@@ -777,6 +791,10 @@ class Canvas(QWidget):
if fill_color:
self.shapes[-1].fill_color = fill_color
if key_cls:
self.shapes[-1].key_cls = key_cls
self.storeShapes()
return self.shapes[-1]
......
import sys, time
from PyQt5 import QtWidgets
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
# !/usr/bin/env python
# -*- coding: utf-8 -*-
from PyQt5.QtCore import QModelIndex
from PyQt5.QtWidgets import QListWidget
class EditInList(QListWidget):
def __init__(self):
super(EditInList,self).__init__()
# click to edit
self.clicked.connect(self.item_clicked)
super(EditInList, self).__init__()
self.edited_item = None
def item_clicked(self, modelindex: QModelIndex):
try:
if self.edited_item is not None:
self.closePersistentEditor(self.edited_item)
except:
self.edited_item = self.currentItem()
def item_clicked(self, modelindex: QModelIndex) -> None:
self.edited_item = self.currentItem()
self.closePersistentEditor(self.edited_item)
item = self.item(modelindex.row())
# time.sleep(0.2)
self.edited_item = item
self.openPersistentEditor(item)
# time.sleep(0.2)
self.editItem(item)
self.edited_item = self.item(modelindex.row())
self.openPersistentEditor(self.edited_item)
self.editItem(self.edited_item)
def mouseDoubleClickEvent(self, event):
# close edit
for i in range(self.count()):
self.closePersistentEditor(self.item(i))
pass
def leaveEvent(self, event):
# close edit
for i in range(self.count()):
self.closePersistentEditor(self.item(i))
\ No newline at end of file
self.closePersistentEditor(self.item(i))
import re
from PyQt5 import QtCore
from PyQt5 import QtGui
from PyQt5 import QtWidgets
from PyQt5.Qt import QT_VERSION_STR
from libs.utils import newIcon, labelValidator
QT5 = QT_VERSION_STR[0] == '5'
# TODO(unknown):
# - Calculate optimal position so as not to go out of screen area.
class KeyQLineEdit(QtWidgets.QLineEdit):
def setListWidget(self, list_widget):
self.list_widget = list_widget
def keyPressEvent(self, e):
if e.key() in [QtCore.Qt.Key_Up, QtCore.Qt.Key_Down]:
self.list_widget.keyPressEvent(e)
else:
super(KeyQLineEdit, self).keyPressEvent(e)
class KeyDialog(QtWidgets.QDialog):
def __init__(
self,
text="Enter object label",
parent=None,
labels=None,
sort_labels=True,
show_text_field=True,
completion="startswith",
fit_to_content=None,
flags=None,
):
if fit_to_content is None:
fit_to_content = {"row": False, "column": True}
self._fit_to_content = fit_to_content
super(KeyDialog, self).__init__(parent)
self.edit = KeyQLineEdit()
self.edit.setPlaceholderText(text)
self.edit.setValidator(labelValidator())
self.edit.editingFinished.connect(self.postProcess)
if flags:
self.edit.textChanged.connect(self.updateFlags)
layout = QtWidgets.QVBoxLayout()
if show_text_field:
layout_edit = QtWidgets.QHBoxLayout()
layout_edit.addWidget(self.edit, 6)
layout.addLayout(layout_edit)
# buttons
self.buttonBox = bb = QtWidgets.QDialogButtonBox(
QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel,
QtCore.Qt.Horizontal,
self,
)
bb.button(bb.Ok).setIcon(newIcon("done"))
bb.button(bb.Cancel).setIcon(newIcon("undo"))
bb.accepted.connect(self.validate)
bb.rejected.connect(self.reject)
layout.addWidget(bb)
# label_list
self.labelList = QtWidgets.QListWidget()
if self._fit_to_content["row"]:
self.labelList.setHorizontalScrollBarPolicy(
QtCore.Qt.ScrollBarAlwaysOff
)
if self._fit_to_content["column"]:
self.labelList.setVerticalScrollBarPolicy(
QtCore.Qt.ScrollBarAlwaysOff
)
self._sort_labels = sort_labels
if labels:
self.labelList.addItems(labels)
if self._sort_labels:
self.labelList.sortItems()
else:
self.labelList.setDragDropMode(
QtWidgets.QAbstractItemView.InternalMove
)
self.labelList.currentItemChanged.connect(self.labelSelected)
self.labelList.itemDoubleClicked.connect(self.labelDoubleClicked)
self.edit.setListWidget(self.labelList)
layout.addWidget(self.labelList)
# label_flags
if flags is None:
flags = {}
self._flags = flags
self.flagsLayout = QtWidgets.QVBoxLayout()
self.resetFlags()
layout.addItem(self.flagsLayout)
self.edit.textChanged.connect(self.updateFlags)
self.setLayout(layout)
# completion
completer = QtWidgets.QCompleter()
if not QT5 and completion != "startswith":
completion = "startswith"
if completion == "startswith":
completer.setCompletionMode(QtWidgets.QCompleter.InlineCompletion)
# Default settings.
# completer.setFilterMode(QtCore.Qt.MatchStartsWith)
elif completion == "contains":
completer.setCompletionMode(QtWidgets.QCompleter.PopupCompletion)
completer.setFilterMode(QtCore.Qt.MatchContains)
else:
raise ValueError("Unsupported completion: {}".format(completion))
completer.setModel(self.labelList.model())
self.edit.setCompleter(completer)
def addLabelHistory(self, label):
if self.labelList.findItems(label, QtCore.Qt.MatchExactly):
return
self.labelList.addItem(label)
if self._sort_labels:
self.labelList.sortItems()
def labelSelected(self, item):
self.edit.setText(item.text())
def validate(self):
text = self.edit.text()
if hasattr(text, "strip"):
text = text.strip()
else:
text = text.trimmed()
if text:
self.accept()
def labelDoubleClicked(self, item):
self.validate()
def postProcess(self):
text = self.edit.text()
if hasattr(text, "strip"):
text = text.strip()
else:
text = text.trimmed()
self.edit.setText(text)
def updateFlags(self, label_new):
# keep state of shared flags
flags_old = self.getFlags()
flags_new = {}
for pattern, keys in self._flags.items():
if re.match(pattern, label_new):
for key in keys:
flags_new[key] = flags_old.get(key, False)
self.setFlags(flags_new)
def deleteFlags(self):
for i in reversed(range(self.flagsLayout.count())):
item = self.flagsLayout.itemAt(i).widget()
self.flagsLayout.removeWidget(item)
item.setParent(None)
def resetFlags(self, label=""):
flags = {}
for pattern, keys in self._flags.items():
if re.match(pattern, label):
for key in keys:
flags[key] = False
self.setFlags(flags)
def setFlags(self, flags):
self.deleteFlags()
for key in flags:
item = QtWidgets.QCheckBox(key, self)
item.setChecked(flags[key])
self.flagsLayout.addWidget(item)
item.show()
def getFlags(self):
flags = {}
for i in range(self.flagsLayout.count()):
item = self.flagsLayout.itemAt(i).widget()
flags[item.text()] = item.isChecked()
return flags
def popUp(self, text=None, move=True, flags=None):
if self._fit_to_content["row"]:
self.labelList.setMinimumHeight(
self.labelList.sizeHintForRow(0) * self.labelList.count() + 2
)
if self._fit_to_content["column"]:
self.labelList.setMinimumWidth(
self.labelList.sizeHintForColumn(0) + 2
)
# if text is None, the previous label in self.edit is kept
if text is None:
text = self.edit.text()
if flags:
self.setFlags(flags)
else:
self.resetFlags(text)
self.edit.setText(text)
self.edit.setSelection(0, len(text))
items = self.labelList.findItems(text, QtCore.Qt.MatchFixedString)
if items:
if len(items) != 1:
self.labelList.setCurrentItem(items[0])
row = self.labelList.row(items[0])
self.edit.completer().setCurrentRow(row)
self.edit.setFocus(QtCore.Qt.PopupFocusReason)
if move:
self.move(QtGui.QCursor.pos())
if self.exec_():
return self.edit.text(), self.getFlags()
else:
return None, None
import PIL.Image
import numpy as np
def rgb2hsv(rgb):
# type: (np.ndarray) -> np.ndarray
"""Convert rgb to hsv.
Parameters
----------
rgb: numpy.ndarray, (H, W, 3), np.uint8
Input rgb image.
Returns
-------
hsv: numpy.ndarray, (H, W, 3), np.uint8
Output hsv image.
"""
hsv = PIL.Image.fromarray(rgb, mode="RGB")
hsv = hsv.convert("HSV")
hsv = np.array(hsv)
return hsv
def hsv2rgb(hsv):
# type: (np.ndarray) -> np.ndarray
"""Convert hsv to rgb.
Parameters
----------
hsv: numpy.ndarray, (H, W, 3), np.uint8
Input hsv image.
Returns
-------
rgb: numpy.ndarray, (H, W, 3), np.uint8
Output rgb image.
"""
rgb = PIL.Image.fromarray(hsv, mode="HSV")
rgb = rgb.convert("RGB")
rgb = np.array(rgb)
return rgb
def label_colormap(n_label=256, value=None):
"""Label colormap.
Parameters
----------
n_label: int
Number of labels (default: 256).
value: float or int
Value scale or value of label color in HSV space.
Returns
-------
cmap: numpy.ndarray, (N, 3), numpy.uint8
Label id to colormap.
"""
def bitget(byteval, idx):
return (byteval & (1 << idx)) != 0
cmap = np.zeros((n_label, 3), dtype=np.uint8)
for i in range(0, n_label):
id = i
r, g, b = 0, 0, 0
for j in range(0, 8):
r = np.bitwise_or(r, (bitget(id, 0) << 7 - j))
g = np.bitwise_or(g, (bitget(id, 1) << 7 - j))
b = np.bitwise_or(b, (bitget(id, 2) << 7 - j))
id = id >> 3
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
if value is not None:
hsv = rgb2hsv(cmap.reshape(1, -1, 3))
if isinstance(value, float):
hsv[:, 1:, 2] = hsv[:, 1:, 2].astype(float) * value
else:
assert isinstance(value, int)
hsv[:, 1:, 2] = value
cmap = hsv2rgb(hsv).reshape(-1, 3)
return cmap
......@@ -10,19 +10,14 @@
# SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#!/usr/bin/python
# !/usr/bin/python
# -*- coding: utf-8 -*-
import math
import sys
try:
from PyQt5.QtGui import *
from PyQt5.QtCore import *
except ImportError:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
from PyQt5.QtCore import QPointF
from PyQt5.QtGui import QColor, QPen, QPainterPath, QFont
from libs.utils import distance
import sys
DEFAULT_LINE_COLOR = QColor(0, 255, 0, 128)
DEFAULT_FILL_COLOR = QColor(255, 0, 0, 128)
......@@ -51,14 +46,17 @@ class Shape(object):
point_size = 8
scale = 1.0
def __init__(self, label=None, line_color=None, difficult=False, paintLabel=False):
def __init__(self, label=None, line_color=None, difficult=False, key_cls="None", paintLabel=False):
self.label = label
self.points = []
self.fill = False
self.selected = False
self.difficult = difficult
self.key_cls = key_cls
self.paintLabel = paintLabel
self.locked = False
self.direction = 0
self.center = None
self._highlightIndex = None
self._highlightMode = self.NEAR_VERTEX
self._highlightSettings = {
......@@ -74,7 +72,24 @@ class Shape(object):
# is used for drawing the pending line a different color.
self.line_color = line_color
def rotate(self, theta):
for i, p in enumerate(self.points):
self.points[i] = self.rotatePoint(p, theta)
self.direction -= theta
self.direction = self.direction % (2 * math.pi)
def rotatePoint(self, p, theta):
order = p - self.center
cosTheta = math.cos(theta)
sinTheta = math.sin(theta)
pResx = cosTheta * order.x() + sinTheta * order.y()
pResy = - sinTheta * order.x() + cosTheta * order.y()
pRes = QPointF(self.center.x() + pResx, self.center.y() + pResy)
return pRes
def close(self):
self.center = QPointF((self.points[0].x() + self.points[2].x()) / 2,
(self.points[0].y() + self.points[2].y()) / 2)
self._closed = True
def reachMaxPoints(self):
......@@ -83,7 +98,9 @@ class Shape(object):
return False
def addPoint(self, point):
if not self.reachMaxPoints(): # 4个点时发出close信号
if self.reachMaxPoints():
self.close()
else:
self.points.append(point)
def popPoint(self):
......@@ -112,7 +129,7 @@ class Shape(object):
# Uncommenting the following line will draw 2 paths
# for the 1st vertex, and make it non-filled, which
# may be desirable.
#self.drawVertex(vrtx_path, 0)
# self.drawVertex(vrtx_path, 0)
for i, p in enumerate(self.points):
line_path.lineTo(p)
......@@ -136,9 +153,9 @@ class Shape(object):
font.setPointSize(8)
font.setBold(True)
painter.setFont(font)
if(self.label == None):
if self.label is None:
self.label = ""
if(min_y < MIN_Y_LABEL):
if min_y < MIN_Y_LABEL:
min_y += MIN_Y_LABEL
painter.drawText(min_x, min_y, self.label)
......@@ -198,6 +215,8 @@ class Shape(object):
def copy(self):
shape = Shape("%s" % self.label)
shape.points = [p for p in self.points]
shape.center = self.center
shape.direction = self.direction
shape.fill = self.fill
shape.selected = self.selected
shape._closed = self._closed
......@@ -206,6 +225,7 @@ class Shape(object):
if self.fill_color != Shape.fill_color:
shape.fill_color = self.fill_color
shape.difficult = self.difficult
shape.key_cls = self.key_cls
return shape
def __len__(self):
......
# -*- encoding: utf-8 -*-
from PyQt5.QtCore import Qt
from PyQt5 import QtWidgets
class EscapableQListWidget(QtWidgets.QListWidget):
def keyPressEvent(self, event):
super(EscapableQListWidget, self).keyPressEvent(event)
if event.key() == Qt.Key_Escape:
self.clearSelection()
class UniqueLabelQListWidget(EscapableQListWidget):
def mousePressEvent(self, event):
super(UniqueLabelQListWidget, self).mousePressEvent(event)
if not self.indexAt(event.pos()).isValid():
self.clearSelection()
def findItemsByLabel(self, label, get_row=False):
items = []
for row in range(self.count()):
item = self.item(row)
if item.data(Qt.UserRole) == label:
items.append(item)
if get_row:
return row
return items
def createItemFromLabel(self, label):
item = QtWidgets.QListWidgetItem()
item.setData(Qt.UserRole, label)
return item
def setItemLabel(self, item, label, color=None):
qlabel = QtWidgets.QLabel()
if color is None:
qlabel.setText(f"{label}")
else:
qlabel.setText('<font color="#{:02x}{:02x}{:02x}">●</font> {} '.format(*color, label))
qlabel.setAlignment(Qt.AlignBottom)
item.setSizeHint(qlabel.sizeHint())
self.setItemWidget(item, qlabel)
......@@ -10,30 +10,26 @@
# SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from math import sqrt
from libs.ustr import ustr
import hashlib
import os
import re
import sys
from math import sqrt
import cv2
import numpy as np
import os
from PyQt5.QtCore import QRegExp, QT_VERSION_STR
from PyQt5.QtGui import QIcon, QRegExpValidator, QColor
from PyQt5.QtWidgets import QPushButton, QAction, QMenu
from libs.ustr import ustr
__dir__ = os.path.dirname(os.path.abspath(__file__)) # 获取本程序文件路径
__dir__ = os.path.dirname(os.path.abspath(__file__)) # 获取本程序文件路径
__iconpath__ = os.path.abspath(os.path.join(__dir__, '../resources/icons'))
try:
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
except ImportError:
from PyQt4.QtGui import *
from PyQt4.QtCore import *
def newIcon(icon, iconSize=None):
if iconSize is not None:
return QIcon(QIcon(__iconpath__ + "/" + icon + ".png").pixmap(iconSize,iconSize))
return QIcon(QIcon(__iconpath__ + "/" + icon + ".png").pixmap(iconSize, iconSize))
else:
return QIcon(__iconpath__ + "/" + icon + ".png")
......@@ -105,24 +101,25 @@ def generateColorByText(text):
s = ustr(text)
hashCode = int(hashlib.sha256(s.encode('utf-8')).hexdigest(), 16)
r = int((hashCode / 255) % 255)
g = int((hashCode / 65025) % 255)
b = int((hashCode / 16581375) % 255)
g = int((hashCode / 65025) % 255)
b = int((hashCode / 16581375) % 255)
return QColor(r, g, b, 100)
def have_qstring():
'''p3/qt5 get rid of QString wrapper as py3 has native unicode str type'''
return not (sys.version_info.major >= 3 or QT_VERSION_STR.startswith('5.'))
def util_qt_strlistclass():
return QStringList if have_qstring() else list
def natural_sort(list, key=lambda s:s):
def natural_sort(list, key=lambda s: s):
"""
Sort the list into natural alphanumeric order.
"""
def get_alphanum_key_func(key):
convert = lambda text: int(text) if text.isdigit() else text
return lambda s: [convert(c) for c in re.split('([0-9]+)', key(s))]
sort_key = get_alphanum_key_func(key)
list.sort(key=sort_key)
......@@ -133,8 +130,8 @@ def get_rotate_crop_image(img, points):
d = 0.0
for index in range(-1, 3):
d += -0.5 * (points[index + 1][1] + points[index][1]) * (
points[index + 1][0] - points[index][0])
if d < 0: # counterclockwise
points[index + 1][0] - points[index][0])
if d < 0: # counterclockwise
tmp = np.array(points)
points[1], points[3] = tmp[3], tmp[1]
......@@ -163,10 +160,11 @@ def get_rotate_crop_image(img, points):
except Exception as e:
print(e)
def stepsInfo(lang='en'):
if lang == 'ch':
msg = "1. 安装与运行:使用上述命令安装与运行程序。\n" \
"2. 打开文件夹:在菜单栏点击 “文件” - 打开目录 选择待标记图片的文件夹.\n"\
"2. 打开文件夹:在菜单栏点击 “文件” - 打开目录 选择待标记图片的文件夹.\n" \
"3. 自动标注:点击 ”自动标注“,使用PPOCR超轻量模型对图片文件名前图片状态为 “X” 的图片进行自动标注。\n" \
"4. 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动" \
"绘制标记框。点击键盘P,则使用四点标注模式(或点击“编辑” - “四点标注”),用户依次点击4个点后,双击左键表示标注完成。\n" \
......@@ -181,25 +179,26 @@ def stepsInfo(lang='en'):
else:
msg = "1. Build and launch using the instructions above.\n" \
"2. Click 'Open Dir' in Menu/File to select the folder of the picture.\n"\
"3. Click 'Auto recognition', use PPOCR model to automatically annotate images which marked with 'X' before the file name."\
"4. Create Box:\n"\
"4.1 Click 'Create RectBox' or press 'W' in English keyboard mode to draw a new rectangle detection box. Click and release left mouse to select a region to annotate the text area.\n"\
"4.2 Press 'P' to enter four-point labeling mode which enables you to create any four-point shape by clicking four points with the left mouse button in succession and DOUBLE CLICK the left mouse as the signal of labeling completion.\n"\
"5. After the marking frame is drawn, the user clicks 'OK', and the detection frame will be pre-assigned a TEMPORARY label.\n"\
"6. Click re-Recognition, model will rewrite ALL recognition results in ALL detection box.\n"\
"7. Double click the result in 'recognition result' list to manually change inaccurate recognition results.\n"\
"8. Click 'Save', the image status will switch to '√',then the program automatically jump to the next.\n"\
"9. Click 'Delete Image' and the image will be deleted to the recycle bin.\n"\
"10. Labeling result: After closing the application or switching the file path, the manually saved label will be stored in *Label.txt* under the opened picture folder.\n"\
" Click PaddleOCR-Save Recognition Results in the menu bar, the recognition training data of such pictures will be saved in the *crop_img* folder, and the recognition label will be saved in *rec_gt.txt*.\n"
"2. Click 'Open Dir' in Menu/File to select the folder of the picture.\n" \
"3. Click 'Auto recognition', use PPOCR model to automatically annotate images which marked with 'X' before the file name." \
"4. Create Box:\n" \
"4.1 Click 'Create RectBox' or press 'W' in English keyboard mode to draw a new rectangle detection box. Click and release left mouse to select a region to annotate the text area.\n" \
"4.2 Press 'P' to enter four-point labeling mode which enables you to create any four-point shape by clicking four points with the left mouse button in succession and DOUBLE CLICK the left mouse as the signal of labeling completion.\n" \
"5. After the marking frame is drawn, the user clicks 'OK', and the detection frame will be pre-assigned a TEMPORARY label.\n" \
"6. Click re-Recognition, model will rewrite ALL recognition results in ALL detection box.\n" \
"7. Double click the result in 'recognition result' list to manually change inaccurate recognition results.\n" \
"8. Click 'Save', the image status will switch to '√',then the program automatically jump to the next.\n" \
"9. Click 'Delete Image' and the image will be deleted to the recycle bin.\n" \
"10. Labeling result: After closing the application or switching the file path, the manually saved label will be stored in *Label.txt* under the opened picture folder.\n" \
" Click PaddleOCR-Save Recognition Results in the menu bar, the recognition training data of such pictures will be saved in the *crop_img* folder, and the recognition label will be saved in *rec_gt.txt*.\n"
return msg
def keysInfo(lang='en'):
if lang == 'ch':
msg = "快捷键\t\t\t说明\n" \
"———————————————————————\n"\
"———————————————————————\n" \
"Ctrl + shift + R\t\t对当前图片的所有标记重新识别\n" \
"W\t\t\t新建矩形框\n" \
"Q\t\t\t新建四点框\n" \
......@@ -223,17 +222,17 @@ def keysInfo(lang='en'):
"———————————————————————\n" \
"Ctrl + shift + R\t\tRe-recognize all the labels\n" \
"\t\t\tof the current image\n" \
"\n"\
"\n" \
"W\t\t\tCreate a rect box\n" \
"Q\t\t\tCreate a four-points box\n" \
"Ctrl + E\t\tEdit label of the selected box\n" \
"Ctrl + R\t\tRe-recognize the selected box\n" \
"Ctrl + C\t\tCopy and paste the selected\n" \
"\t\t\tbox\n" \
"\n"\
"\n" \
"Ctrl + Left Mouse\tMulti select the label\n" \
"Button\t\t\tbox\n" \
"\n"\
"\n" \
"Backspace\t\tDelete the selected box\n" \
"Ctrl + V\t\tCheck image\n" \
"Ctrl + Shift + d\tDelete image\n" \
......@@ -245,4 +244,4 @@ def keysInfo(lang='en'):
"———————————————————————\n" \
"Notice:For Mac users, use the 'Command' key instead of the 'Ctrl' key"
return msg
\ No newline at end of file
return msg
......@@ -106,4 +106,7 @@ undo=Undo
undoLastPoint=Undo Last Point
autoSaveMode=Auto Export Label Mode
lockBox=Lock selected box/Unlock all box
lockBoxDetail=Lock selected box/Unlock all box
\ No newline at end of file
lockBoxDetail=Lock selected box/Unlock all box
keyListTitle=Key List
keyDialogTip=Enter object label
keyChange=Change Box Key
......@@ -107,3 +107,6 @@ undoLastPoint=撤销上个点
autoSaveMode=自动导出标记结果
lockBox=锁定框/解除锁定框
lockBoxDetail=若当前没有框处于锁定状态则锁定选中的框,若存在锁定框则解除所有锁定框的锁定状态
keyListTitle=关键词列表
keyDialogTip=请输入类型名称
keyChange=更改Box关键字类别
\ No newline at end of file
......@@ -92,7 +92,7 @@ Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Andr
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) | ch_PP-OCRv2_xx |Mobile & Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
| Chinese and English ultra-lightweight PP-OCR model (9.4M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
| Chinese and English general PP-OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
| Chinese and English general PP-OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
For more model downloads (including multiple languages), please refer to [PP-OCR series model downloads](./doc/doc_en/models_list_en.md).
......@@ -152,7 +152,7 @@ For a new language request, please refer to [Guideline for new language_requests
[1] PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module (as shown in the green box above). The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941).
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (arXiv link is coming soon).
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (https://arxiv.org/abs/2109.03144).
......@@ -181,16 +181,11 @@ For a new language request, please refer to [Guideline for new language_requests
<a name="language_requests"></a>
## Guideline for New Language Requests
If you want to request a new language support, a PR with 2 following files are needed:
If you want to request a new language support, a PR with 1 following files are needed:
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.
If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.
More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
......
......@@ -99,7 +99,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [PP-Structure信息提取](./ppstructure/README_ch.md)
- [版面分析](./ppstructure/layout/README_ch.md)
- [表格识别](./ppstructure/table/README_ch.md)
- [DocVQA](./ppstructure/vqa/README_ch.md)
- [DocVQA](./ppstructure/vqa/README.md)
- [关键信息提取](./ppstructure/docs/kie.md)
- OCR学术圈
- [两阶段模型介绍与下载](./doc/doc_ch/algorithm_overview.md)
......
......@@ -26,35 +26,57 @@ def parse_args():
parser.add_argument(
"--filename", type=str, help="The name of log which need to analysis.")
parser.add_argument(
"--log_with_profiler", type=str, help="The path of train log with profiler")
"--log_with_profiler",
type=str,
help="The path of train log with profiler")
parser.add_argument(
"--profiler_path", type=str, help="The path of profiler timeline log.")
parser.add_argument(
"--keyword", type=str, help="Keyword to specify analysis data")
parser.add_argument(
"--separator", type=str, default=None, help="Separator of different field in log")
"--separator",
type=str,
default=None,
help="Separator of different field in log")
parser.add_argument(
'--position', type=int, default=None, help='The position of data field')
parser.add_argument(
'--range', type=str, default="", help='The range of data field to intercept')
'--range',
type=str,
default="",
help='The range of data field to intercept')
parser.add_argument(
'--base_batch_size', type=int, help='base_batch size on gpu')
parser.add_argument(
'--skip_steps', type=int, default=0, help='The number of steps to be skipped')
'--skip_steps',
type=int,
default=0,
help='The number of steps to be skipped')
parser.add_argument(
'--model_mode', type=int, default=-1, help='Analysis mode, default value is -1')
'--model_mode',
type=int,
default=-1,
help='Analysis mode, default value is -1')
parser.add_argument('--ips_unit', type=str, default=None, help='IPS unit')
parser.add_argument(
'--ips_unit', type=str, default=None, help='IPS unit')
parser.add_argument(
'--model_name', type=str, default=0, help='training model_name, transformer_base')
'--model_name',
type=str,
default=0,
help='training model_name, transformer_base')
parser.add_argument(
'--mission_name', type=str, default=0, help='training mission name')
parser.add_argument(
'--direction_id', type=int, default=0, help='training direction_id')
parser.add_argument(
'--run_mode', type=str, default="sp", help='multi process or single process')
'--run_mode',
type=str,
default="sp",
help='multi process or single process')
parser.add_argument(
'--index', type=int, default=1, help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}')
'--index',
type=int,
default=1,
help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}')
parser.add_argument(
'--gpu_num', type=int, default=1, help='nums of training gpus')
args = parser.parse_args()
......@@ -72,7 +94,12 @@ def _is_number(num):
class TimeAnalyzer(object):
def __init__(self, filename, keyword=None, separator=None, position=None, range="-1"):
def __init__(self,
filename,
keyword=None,
separator=None,
position=None,
range="-1"):
if filename is None:
raise Exception("Please specify the filename!")
......@@ -99,7 +126,8 @@ class TimeAnalyzer(object):
# Distil the string from a line.
line = line.strip()
line_words = line.split(self.separator) if self.separator else line.split()
line_words = line.split(
self.separator) if self.separator else line.split()
if args.position:
result = line_words[self.position]
else:
......@@ -108,27 +136,36 @@ class TimeAnalyzer(object):
if line_words[i] == self.keyword:
result = line_words[i + 1]
break
# Distil the result from the picked string.
if not self.range:
result = result[0:]
elif _is_number(self.range):
result = result[0: int(self.range)]
result = result[0:int(self.range)]
else:
result = result[int(self.range.split(":")[0]): int(self.range.split(":")[1])]
result = result[int(self.range.split(":")[0]):int(
self.range.split(":")[1])]
self.records.append(float(result))
except Exception as exc:
print("line is: {}; separator={}; position={}".format(line, self.separator, self.position))
print("line is: {}; separator={}; position={}".format(
line, self.separator, self.position))
print("Extract {} records: separator={}; position={}".format(len(self.records), self.separator, self.position))
print("Extract {} records: separator={}; position={}".format(
len(self.records), self.separator, self.position))
def _get_fps(self, mode, batch_size, gpu_num, avg_of_records, run_mode, unit=None):
def _get_fps(self,
mode,
batch_size,
gpu_num,
avg_of_records,
run_mode,
unit=None):
if mode == -1 and run_mode == 'sp':
assert unit, "Please set the unit when mode is -1."
fps = gpu_num * avg_of_records
elif mode == -1 and run_mode == 'mp':
assert unit, "Please set the unit when mode is -1."
fps = gpu_num * avg_of_records #temporarily, not used now
fps = gpu_num * avg_of_records #temporarily, not used now
print("------------this is mp")
elif mode == 0:
# s/step -> samples/s
......@@ -155,12 +192,20 @@ class TimeAnalyzer(object):
return fps, unit
def analysis(self, batch_size, gpu_num=1, skip_steps=0, mode=-1, run_mode='sp', unit=None):
def analysis(self,
batch_size,
gpu_num=1,
skip_steps=0,
mode=-1,
run_mode='sp',
unit=None):
if batch_size <= 0:
print("base_batch_size should larger than 0.")
return 0, ''
if len(self.records) <= skip_steps: # to address the condition which item of log equals to skip_steps
if len(
self.records
) <= skip_steps: # to address the condition which item of log equals to skip_steps
print("no records")
return 0, ''
......@@ -180,16 +225,20 @@ class TimeAnalyzer(object):
skip_max = self.records[i]
avg_of_records = sum_of_records / float(count)
avg_of_records_skipped = sum_of_records_skipped / float(count - skip_steps)
avg_of_records_skipped = sum_of_records_skipped / float(count -
skip_steps)
fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records, run_mode, unit)
fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num, avg_of_records_skipped, run_mode, unit)
fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records,
run_mode, unit)
fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num,
avg_of_records_skipped, run_mode, unit)
if mode == -1:
print("average ips of %d steps, skip 0 step:" % count)
print("\tAvg: %.3f %s" % (avg_of_records, fps_unit))
print("\tFPS: %.3f %s" % (fps, fps_unit))
if skip_steps > 0:
print("average ips of %d steps, skip %d steps:" % (count, skip_steps))
print("average ips of %d steps, skip %d steps:" %
(count, skip_steps))
print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit))
print("\tMin: %.3f %s" % (skip_min, fps_unit))
print("\tMax: %.3f %s" % (skip_max, fps_unit))
......@@ -199,7 +248,8 @@ class TimeAnalyzer(object):
print("\tAvg: %.3f steps/s" % avg_of_records)
print("\tFPS: %.3f %s" % (fps, fps_unit))
if skip_steps > 0:
print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
print("average latency of %d steps, skip %d steps:" %
(count, skip_steps))
print("\tAvg: %.3f steps/s" % avg_of_records_skipped)
print("\tMin: %.3f steps/s" % skip_min)
print("\tMax: %.3f steps/s" % skip_max)
......@@ -209,7 +259,8 @@ class TimeAnalyzer(object):
print("\tAvg: %.3f s/step" % avg_of_records)
print("\tFPS: %.3f %s" % (fps, fps_unit))
if skip_steps > 0:
print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
print("average latency of %d steps, skip %d steps:" %
(count, skip_steps))
print("\tAvg: %.3f s/step" % avg_of_records_skipped)
print("\tMin: %.3f s/step" % skip_min)
print("\tMax: %.3f s/step" % skip_max)
......@@ -236,7 +287,8 @@ if __name__ == "__main__":
if args.gpu_num == 1:
run_info["log_with_profiler"] = args.log_with_profiler
run_info["profiler_path"] = args.profiler_path
analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator, args.position, args.range)
analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator,
args.position, args.range)
run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis(
batch_size=args.base_batch_size,
gpu_num=args.gpu_num,
......@@ -245,29 +297,50 @@ if __name__ == "__main__":
run_mode=args.run_mode,
unit=args.ips_unit)
try:
if int(os.getenv('job_fail_flag')) == 1 or int(run_info["FINAL_RESULT"]) == 0:
if int(os.getenv('job_fail_flag')) == 1 or int(run_info[
"FINAL_RESULT"]) == 0:
run_info["JOB_FAIL_FLAG"] = 1
except:
pass
elif args.index == 3:
run_info["FINAL_RESULT"] = {}
records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead', None, 3, '').records
records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead', None, 5).records
records_ct_total = TimeAnalyzer(args.filename, 'Computation time', None, 3, '').records
records_gm_total = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 4, '').records
records_gm_ratio = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 6).records
records_gmas_total = TimeAnalyzer(args.filename, 'GpuMemcpyAsync Calls', None, 4, '').records
records_gms_total = TimeAnalyzer(args.filename, 'GpuMemcpySync Calls', None, 4, '').records
run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[0] if records_fo_total else 0
run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[0] if records_fo_ratio else 0
run_info["FINAL_RESULT"]["ComputationTime_Total"] = records_ct_total[0] if records_ct_total else 0
run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[0] if records_gm_total else 0
run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[0] if records_gm_ratio else 0
run_info["FINAL_RESULT"]["GpuMemcpyAsync_Total"] = records_gmas_total[0] if records_gmas_total else 0
run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[0] if records_gms_total else 0
records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead',
None, 3, '').records
records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead',
None, 5).records
records_ct_total = TimeAnalyzer(args.filename, 'Computation time',
None, 3, '').records
records_gm_total = TimeAnalyzer(args.filename,
'GpuMemcpy Calls',
None, 4, '').records
records_gm_ratio = TimeAnalyzer(args.filename,
'GpuMemcpy Calls',
None, 6).records
records_gmas_total = TimeAnalyzer(args.filename,
'GpuMemcpyAsync Calls',
None, 4, '').records
records_gms_total = TimeAnalyzer(args.filename,
'GpuMemcpySync Calls',
None, 4, '').records
run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[
0] if records_fo_total else 0
run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[
0] if records_fo_ratio else 0
run_info["FINAL_RESULT"][
"ComputationTime_Total"] = records_ct_total[
0] if records_ct_total else 0
run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[
0] if records_gm_total else 0
run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[
0] if records_gm_ratio else 0
run_info["FINAL_RESULT"][
"GpuMemcpyAsync_Total"] = records_gmas_total[
0] if records_gmas_total else 0
run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[
0] if records_gms_total else 0
else:
print("Not support!")
except Exception:
traceback.print_exc()
print("{}".format(json.dumps(run_info))) # it's required, for the log file path insert to the database
traceback.print_exc()
print("{}".format(json.dumps(run_info))
) # it's required, for the log file path insert to the database
......@@ -58,3 +58,4 @@ source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合
_set_params $@
#_train # 如果只想产出训练log,不解析,可取消注释
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开
......@@ -36,3 +36,4 @@ for model_mode in ${model_mode_list[@]}; do
done
Global:
use_gpu: true
use_xpu: false
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 10
......
Global:
use_gpu: True
epoch_num: 8
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/rec/pren_new
save_epoch_step: 3
# evaluation is run every 2000 iterations after the 4000th iteration
eval_batch_step: [4000, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
max_text_length: &max_text_length 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_pren.txt
Optimizer:
name: Adadelta
lr:
name: Piecewise
decay_epochs: [2, 5, 7]
values: [0.5, 0.1, 0.01, 0.001]
Architecture:
model_type: rec
algorithm: PREN
in_channels: 3
Backbone:
name: EfficientNetb3_PREN
Neck:
name: PRENFPN
n_r: 5
d_model: 384
max_len: *max_text_length
dropout: 0.1
Head:
name: PRENHead
Loss:
name: PRENLoss
PostProcess:
name: PRENLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage:
img_mode: BGR
channel_first: False
- PRENLabelEncode:
- RecAug:
- PRENResizeImg:
image_shape: [64, 256] # h,w
- KeepKeys:
keep_keys: ['image', 'label']
loader:
shuffle: True
batch_size_per_card: 128
drop_last: True
num_workers: 8
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage:
img_mode: BGR
channel_first: False
- PRENLabelEncode:
- PRENResizeImg:
image_shape: [64, 256] # h,w
- KeepKeys:
keep_keys: ['image', 'label']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 64
num_workers: 8
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/re_layoutlmv2/
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2048
infer_img: doc/vqa/input/zh_val_21.jpg
save_res_path: ./output/re/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLMv2"
Transform:
Backbone:
name: LayoutLMv2ForRe
pretrained: True
checkpoints:
Loss:
name: LossFromOutput
key: loss
reduction: mean
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
clip_norm: 10
lr:
learning_rate: 0.00005
warmup_epoch: 10
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQAReTokenLayoutLMPostProcess
Metric:
name: VQAReTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- train_data/XFUND/zh_train/xfun_normalize_train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: &class_path ppstructure/vqa/labels/labels_ser.txt
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQAReTokenRelation:
- VQAReTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 8
collate_fn: ListCollator
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- train_data/XFUND/zh_val/xfun_normalize_val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQAReTokenRelation:
- VQAReTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 8
collate_fn: ListCollator
......@@ -21,7 +21,7 @@ Architecture:
Backbone:
name: LayoutXLMForRe
pretrained: True
checkpoints:
checkpoints:
Loss:
name: LossFromOutput
......@@ -35,6 +35,7 @@ Optimizer:
clip_norm: 10
lr:
learning_rate: 0.00005
warmup_epoch: 10
regularizer:
name: L2
factor: 0.00000
......@@ -81,7 +82,7 @@ Train:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
num_workers: 8
collate_fn: ListCollator
Eval:
......@@ -118,5 +119,5 @@ Eval:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4
num_workers: 8
collate_fn: ListCollator
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutlmv2/
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: doc/vqa/input/zh_val_0.jpg
save_res_path: ./output/ser/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLMv2"
Transform:
Backbone:
name: LayoutLMv2ForSer
pretrained: True
checkpoints:
num_classes: &num_classes 7
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ppstructure/vqa/labels/labels_ser.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- train_data/XFUND/zh_train/xfun_normalize_train.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids','labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- train_data/XFUND/zh_val/xfun_normalize_val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4
# 如何快速测试
### 1. 安装最新版本的Android Studio
- [Android Demo](#android-demo)
- [1. 简介](#1-简介)
- [2. 近期更新](#2-近期更新)
- [3. 快速使用](#3-快速使用)
- [3.1 安装最新版本的Android Studio](#31-安装最新版本的android-studio)
- [3.2 安装 NDK 20 以上版本](#32-安装-ndk-20-以上版本)
- [3.3 导入项目](#33-导入项目)
- [4 更多支持](#4-更多支持)
# Android Demo
## 1. 简介
此为PaddleOCR的Android Demo,目前支持文本检测,文本方向分类器和文本识别模型的使用。使用 [PaddleLite v2.10](https://github.com/PaddlePaddle/Paddle-Lite/tree/release/v2.10) 进行开发。
## 2. 近期更新
* 2022.02.27
* 预测库更新到PaddleLite v2.10
* 支持6种运行模式:
* 检测+分类+识别
* 检测+识别
* 分类+识别
* 检测
* 识别
* 分类
## 3. 快速使用
### 3.1 安装最新版本的Android Studio
可以从 https://developer.android.com/studio 下载。本Demo使用是4.0版本Android Studio编写。
### 2. 按照NDK 20 以上版本
### 3.2 安装 NDK 20 以上版本
Demo测试的时候使用的是NDK 20b版本,20版本以上均可以支持编译成功。
如果您是初学者,可以用以下方式安装和测试NDK编译环境。
点击 File -> New ->New Project, 新建 "Native C++" project
### 3. 导入项目
### 3.3 导入项目
点击 File->New->Import Project..., 然后跟着Android Studio的引导导入
## 4 更多支持
# 获得更多支持
前往[端计算模型生成平台EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite),获得更多开发支持:
前往[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite),获得更多开发支持
- Demo APP:可使用手机扫码安装,方便手机端快速体验文字识别
- SDK:模型被封装为适配不同芯片硬件和操作系统SDK,包括完善的接口,方便进行二次开发
......@@ -8,8 +8,8 @@ android {
applicationId "com.baidu.paddle.lite.demo.ocr"
minSdkVersion 23
targetSdkVersion 29
versionCode 1
versionName "1.0"
versionCode 2
versionName "2.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
......@@ -17,11 +17,6 @@ android {
arguments '-DANDROID_PLATFORM=android-23', '-DANDROID_STL=c++_shared' ,"-DANDROID_ARM_NEON=TRUE"
}
}
ndk {
// abiFilters "arm64-v8a", "armeabi-v7a"
abiFilters "arm64-v8a", "armeabi-v7a"
ldLibs "jnigraphics"
}
}
buildTypes {
release {
......@@ -48,7 +43,7 @@ dependencies {
def archives = [
[
'src' : 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/paddle_lite_libs_v2_9_0.tar.gz',
'src' : 'https://paddleocr.bj.bcebos.com/libs/paddle_lite_libs_v2_10.tar.gz',
'dest': 'PaddleLite'
],
[
......@@ -56,7 +51,7 @@ def archives = [
'dest': 'OpenCV'
],
[
'src' : 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ocr_v2_for_cpu.tar.gz',
'src' : 'https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2.tar.gz',
'dest' : 'src/main/assets/models'
],
[
......
......@@ -14,7 +14,6 @@
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<!-- to test MiniActivity, change this to com.baidu.paddle.lite.demo.ocr.MiniActivity -->
<activity android:name="com.baidu.paddle.lite.demo.ocr.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
......
......@@ -13,7 +13,7 @@ static paddle::lite_api::PowerMode str_to_cpu_mode(const std::string &cpu_mode);
extern "C" JNIEXPORT jlong JNICALL
Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_init(
JNIEnv *env, jobject thiz, jstring j_det_model_path,
jstring j_rec_model_path, jstring j_cls_model_path, jint j_thread_num,
jstring j_rec_model_path, jstring j_cls_model_path, jint j_use_opencl, jint j_thread_num,
jstring j_cpu_mode) {
std::string det_model_path = jstring_to_cpp_string(env, j_det_model_path);
std::string rec_model_path = jstring_to_cpp_string(env, j_rec_model_path);
......@@ -21,6 +21,7 @@ Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_init(
int thread_num = j_thread_num;
std::string cpu_mode = jstring_to_cpp_string(env, j_cpu_mode);
ppredictor::OCR_Config conf;
conf.use_opencl = j_use_opencl;
conf.thread_num = thread_num;
conf.mode = str_to_cpu_mode(cpu_mode);
ppredictor::OCR_PPredictor *orc_predictor =
......@@ -57,32 +58,31 @@ str_to_cpu_mode(const std::string &cpu_mode) {
extern "C" JNIEXPORT jfloatArray JNICALL
Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_forward(
JNIEnv *env, jobject thiz, jlong java_pointer, jfloatArray buf,
jfloatArray ddims, jobject original_image) {
JNIEnv *env, jobject thiz, jlong java_pointer, jobject original_image,jint j_max_size_len, jint j_run_det, jint j_run_cls, jint j_run_rec) {
LOGI("begin to run native forward");
if (java_pointer == 0) {
LOGE("JAVA pointer is NULL");
return cpp_array_to_jfloatarray(env, nullptr, 0);
}
cv::Mat origin = bitmap_to_cv_mat(env, original_image);
if (origin.size == 0) {
LOGE("origin bitmap cannot convert to CV Mat");
return cpp_array_to_jfloatarray(env, nullptr, 0);
}
int max_size_len = j_max_size_len;
int run_det = j_run_det;
int run_cls = j_run_cls;
int run_rec = j_run_rec;
ppredictor::OCR_PPredictor *ppredictor =
(ppredictor::OCR_PPredictor *)java_pointer;
std::vector<float> dims_float_arr = jfloatarray_to_float_vector(env, ddims);
std::vector<int64_t> dims_arr;
dims_arr.resize(dims_float_arr.size());
std::copy(dims_float_arr.cbegin(), dims_float_arr.cend(), dims_arr.begin());
// 这里值有点大,就不调用jfloatarray_to_float_vector了
int64_t buf_len = (int64_t)env->GetArrayLength(buf);
jfloat *buf_data = env->GetFloatArrayElements(buf, JNI_FALSE);
float *data = (jfloat *)buf_data;
std::vector<ppredictor::OCRPredictResult> results =
ppredictor->infer_ocr(dims_arr, data, buf_len, NET_OCR, origin);
ppredictor->infer_ocr(origin, max_size_len, run_det, run_cls, run_rec);
LOGI("infer_ocr finished with boxes %ld", results.size());
// 这里将std::vector<ppredictor::OCRPredictResult> 序列化成
// float数组,传输到java层再反序列化
std::vector<float> float_arr;
......@@ -90,13 +90,18 @@ Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_forward(
float_arr.push_back(r.points.size());
float_arr.push_back(r.word_index.size());
float_arr.push_back(r.score);
// add det point
for (const std::vector<int> &point : r.points) {
float_arr.push_back(point.at(0));
float_arr.push_back(point.at(1));
}
// add rec word idx
for (int index : r.word_index) {
float_arr.push_back(index);
}
// add cls result
float_arr.push_back(r.cls_label);
float_arr.push_back(r.cls_score);
}
return cpp_array_to_jfloatarray(env, float_arr.data(), float_arr.size());
}
......
......@@ -17,15 +17,15 @@ int OCR_PPredictor::init(const std::string &det_model_content,
const std::string &rec_model_content,
const std::string &cls_model_content) {
_det_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR, _config.mode});
new PPredictor{_config.use_opencl,_config.thread_num, NET_OCR, _config.mode});
_det_predictor->init_nb(det_model_content);
_rec_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
new PPredictor{_config.use_opencl,_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_rec_predictor->init_nb(rec_model_content);
_cls_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
new PPredictor{_config.use_opencl,_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_cls_predictor->init_nb(cls_model_content);
return RETURN_OK;
}
......@@ -34,15 +34,16 @@ int OCR_PPredictor::init_from_file(const std::string &det_model_path,
const std::string &rec_model_path,
const std::string &cls_model_path) {
_det_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR, _config.mode});
new PPredictor{_config.use_opencl, _config.thread_num, NET_OCR, _config.mode});
_det_predictor->init_from_file(det_model_path);
_rec_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
new PPredictor{_config.use_opencl,_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_rec_predictor->init_from_file(rec_model_path);
_cls_predictor = std::unique_ptr<PPredictor>(
new PPredictor{_config.thread_num, NET_OCR_INTERNAL, _config.mode});
new PPredictor{_config.use_opencl,_config.thread_num, NET_OCR_INTERNAL, _config.mode});
_cls_predictor->init_from_file(cls_model_path);
return RETURN_OK;
}
......@@ -77,90 +78,173 @@ visual_img(const std::vector<std::vector<std::vector<int>>> &filter_boxes,
}
std::vector<OCRPredictResult>
OCR_PPredictor::infer_ocr(const std::vector<int64_t> &dims,
const float *input_data, int input_len, int net_flag,
cv::Mat &origin) {
OCR_PPredictor::infer_ocr(cv::Mat &origin,int max_size_len, int run_det, int run_cls, int run_rec) {
LOGI("ocr cpp start *****************");
LOGI("ocr cpp det: %d, cls: %d, rec: %d", run_det, run_cls, run_rec);
std::vector<OCRPredictResult> ocr_results;
if(run_det){
infer_det(origin, max_size_len, ocr_results);
}
if(run_rec){
if(ocr_results.size()==0){
OCRPredictResult res;
ocr_results.emplace_back(std::move(res));
}
for(int i = 0; i < ocr_results.size();i++) {
infer_rec(origin, run_cls, ocr_results[i]);
}
}else if(run_cls){
ClsPredictResult cls_res = infer_cls(origin);
OCRPredictResult res;
res.cls_score = cls_res.cls_score;
res.cls_label = cls_res.cls_label;
ocr_results.push_back(res);
}
LOGI("ocr cpp end *****************");
return ocr_results;
}
cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
std::vector<float> &ratio_hw) {
int w = img.cols;
int h = img.rows;
float ratio = 1.f;
int max_wh = w >= h ? w : h;
if (max_wh > max_size_len) {
if (h > w) {
ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
} else {
ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
}
}
int resize_h = static_cast<int>(float(h) * ratio);
int resize_w = static_cast<int>(float(w) * ratio);
if (resize_h % 32 == 0)
resize_h = resize_h;
else if (resize_h / 32 < 1 + 1e-5)
resize_h = 32;
else
resize_h = (resize_h / 32 - 1) * 32;
if (resize_w % 32 == 0)
resize_w = resize_w;
else if (resize_w / 32 < 1 + 1e-5)
resize_w = 32;
else
resize_w = (resize_w / 32 - 1) * 32;
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
return resize_img;
}
void OCR_PPredictor::infer_det(cv::Mat &origin, int max_size_len, std::vector<OCRPredictResult> &ocr_results) {
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
PredictorInput input = _det_predictor->get_first_input();
input.set_dims(dims);
input.set_data(input_data, input_len);
std::vector<float> ratio_hw;
cv::Mat input_image = DetResizeImg(origin, max_size_len, ratio_hw);
input_image.convertTo(input_image, CV_32FC3, 1 / 255.0f);
const float *dimg = reinterpret_cast<const float *>(input_image.data);
int input_size = input_image.rows * input_image.cols;
input.set_dims({1, 3, input_image.rows, input_image.cols});
neon_mean_scale(dimg, input.get_mutable_float_data(), input_size, mean,
scale);
LOGI("ocr cpp det shape %d,%d", input_image.rows,input_image.cols);
std::vector<PredictorOutput> results = _det_predictor->infer();
PredictorOutput &res = results.at(0);
std::vector<std::vector<std::vector<int>>> filtered_box = calc_filtered_boxes(
res.get_float_data(), res.get_size(), (int)dims[2], (int)dims[3], origin);
LOGI("Filter_box size %ld", filtered_box.size());
return infer_rec(filtered_box, origin);
res.get_float_data(), res.get_size(), input_image.rows, input_image.cols, origin);
LOGI("ocr cpp det Filter_box size %ld", filtered_box.size());
for(int i = 0;i<filtered_box.size();i++){
LOGI("ocr cpp box %d,%d,%d,%d,%d,%d,%d,%d", filtered_box[i][0][0],filtered_box[i][0][1], filtered_box[i][1][0],filtered_box[i][1][1], filtered_box[i][2][0],filtered_box[i][2][1], filtered_box[i][3][0],filtered_box[i][3][1]);
OCRPredictResult res;
res.points = filtered_box[i];
ocr_results.push_back(res);
}
}
std::vector<OCRPredictResult> OCR_PPredictor::infer_rec(
const std::vector<std::vector<std::vector<int>>> &boxes,
const cv::Mat &origin_img) {
void OCR_PPredictor::infer_rec(const cv::Mat &origin_img, int run_cls, OCRPredictResult& ocr_result) {
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
std::vector<int64_t> dims = {1, 3, 0, 0};
std::vector<OCRPredictResult> ocr_results;
PredictorInput input = _rec_predictor->get_first_input();
for (auto bp = boxes.crbegin(); bp != boxes.crend(); ++bp) {
const std::vector<std::vector<int>> &box = *bp;
cv::Mat crop_img = get_rotate_crop_image(origin_img, box);
crop_img = infer_cls(crop_img);
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
cv::Mat input_image = crnn_resize_img(crop_img, wh_ratio);
input_image.convertTo(input_image, CV_32FC3, 1 / 255.0f);
const float *dimg = reinterpret_cast<const float *>(input_image.data);
int input_size = input_image.rows * input_image.cols;
const std::vector<std::vector<int>> &box = ocr_result.points;
cv::Mat crop_img;
if(box.size()>0){
crop_img = get_rotate_crop_image(origin_img, box);
}
else{
crop_img = origin_img;
}
dims[2] = input_image.rows;
dims[3] = input_image.cols;
input.set_dims(dims);
if(run_cls){
ClsPredictResult cls_res = infer_cls(crop_img);
crop_img = cls_res.img;
ocr_result.cls_score = cls_res.cls_score;
ocr_result.cls_label = cls_res.cls_label;
}
neon_mean_scale(dimg, input.get_mutable_float_data(), input_size, mean,
scale);
std::vector<PredictorOutput> results = _rec_predictor->infer();
const float *predict_batch = results.at(0).get_float_data();
const std::vector<int64_t> predict_shape = results.at(0).get_shape();
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
cv::Mat input_image = crnn_resize_img(crop_img, wh_ratio);
input_image.convertTo(input_image, CV_32FC3, 1 / 255.0f);
const float *dimg = reinterpret_cast<const float *>(input_image.data);
int input_size = input_image.rows * input_image.cols;
OCRPredictResult res;
dims[2] = input_image.rows;
dims[3] = input_image.cols;
input.set_dims(dims);
// ctc decode
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
argmax_idx = int(argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
res.word_index.push_back(argmax_idx);
}
last_index = argmax_idx;
}
score /= count;
if (res.word_index.empty()) {
continue;
neon_mean_scale(dimg, input.get_mutable_float_data(), input_size, mean,
scale);
std::vector<PredictorOutput> results = _rec_predictor->infer();
const float *predict_batch = results.at(0).get_float_data();
const std::vector<int64_t> predict_shape = results.at(0).get_shape();
// ctc decode
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
argmax_idx = int(argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
ocr_result.word_index.push_back(argmax_idx);
}
res.score = score;
res.points = box;
ocr_results.emplace_back(std::move(res));
last_index = argmax_idx;
}
LOGI("ocr_results finished %lu", ocr_results.size());
return ocr_results;
score /= count;
ocr_result.score = score;
LOGI("ocr cpp rec word size %ld", count);
}
cv::Mat OCR_PPredictor::infer_cls(const cv::Mat &img, float thresh) {
ClsPredictResult OCR_PPredictor::infer_cls(const cv::Mat &img, float thresh) {
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
std::vector<int64_t> dims = {1, 3, 0, 0};
std::vector<OCRPredictResult> ocr_results;
PredictorInput input = _cls_predictor->get_first_input();
......@@ -182,7 +266,7 @@ cv::Mat OCR_PPredictor::infer_cls(const cv::Mat &img, float thresh) {
float score = 0;
int label = 0;
for (int64_t i = 0; i < results.at(0).get_size(); i++) {
LOGI("output scores [%f]", scores[i]);
LOGI("ocr cpp cls output scores [%f]", scores[i]);
if (scores[i] > score) {
score = scores[i];
label = i;
......@@ -193,7 +277,12 @@ cv::Mat OCR_PPredictor::infer_cls(const cv::Mat &img, float thresh) {
if (label % 2 == 1 && score > thresh) {
cv::rotate(srcimg, srcimg, 1);
}
return srcimg;
ClsPredictResult res;
res.cls_label = label;
res.cls_score = score;
res.img = srcimg;
LOGI("ocr cpp cls word cls %ld, %f", label, score);
return res;
}
std::vector<std::vector<std::vector<int>>>
......
......@@ -15,7 +15,8 @@ namespace ppredictor {
* Config
*/
struct OCR_Config {
int thread_num = 4; // Thread num
int use_opencl = 0;
int thread_num = 4; // Thread num
paddle::lite_api::PowerMode mode =
paddle::lite_api::LITE_POWER_HIGH; // PaddleLite Mode
};
......@@ -27,8 +28,15 @@ struct OCRPredictResult {
std::vector<int> word_index;
std::vector<std::vector<int>> points;
float score;
float cls_score;
int cls_label=-1;
};
struct ClsPredictResult {
float cls_score;
int cls_label=-1;
cv::Mat img;
};
/**
* OCR there are 2 models
* 1. First model(det),select polygones to show where are the texts
......@@ -62,8 +70,7 @@ public:
* @return
*/
virtual std::vector<OCRPredictResult>
infer_ocr(const std::vector<int64_t> &dims, const float *input_data,
int input_len, int net_flag, cv::Mat &origin);
infer_ocr(cv::Mat &origin, int max_size_len, int run_det, int run_cls, int run_rec);
virtual NET_TYPE get_net_flag() const;
......@@ -80,25 +87,26 @@ private:
calc_filtered_boxes(const float *pred, int pred_size, int output_height,
int output_width, const cv::Mat &origin);
void
infer_det(cv::Mat &origin, int max_side_len, std::vector<OCRPredictResult>& ocr_results);
/**
* infer for second model
* infer for rec model
*
* @param boxes
* @param origin
* @return
*/
std::vector<OCRPredictResult>
infer_rec(const std::vector<std::vector<std::vector<int>>> &boxes,
const cv::Mat &origin);
void
infer_rec(const cv::Mat &origin, int run_cls, OCRPredictResult& ocr_result);
/**
/**
* infer for cls model
*
* @param boxes
* @param origin
* @return
*/
cv::Mat infer_cls(const cv::Mat &origin, float thresh = 0.9);
ClsPredictResult infer_cls(const cv::Mat &origin, float thresh = 0.9);
/**
* Postprocess or sencod model to extract text
......
......@@ -2,9 +2,9 @@
#include "common.h"
namespace ppredictor {
PPredictor::PPredictor(int thread_num, int net_flag,
PPredictor::PPredictor(int use_opencl, int thread_num, int net_flag,
paddle::lite_api::PowerMode mode)
: _thread_num(thread_num), _net_flag(net_flag), _mode(mode) {}
: _use_opencl(use_opencl), _thread_num(thread_num), _net_flag(net_flag), _mode(mode) {}
int PPredictor::init_nb(const std::string &model_content) {
paddle::lite_api::MobileConfig config;
......@@ -19,10 +19,40 @@ int PPredictor::init_from_file(const std::string &model_content) {
}
template <typename ConfigT> int PPredictor::_init(ConfigT &config) {
bool is_opencl_backend_valid = paddle::lite_api::IsOpenCLBackendValid(/*check_fp16_valid = false*/);
if (is_opencl_backend_valid) {
if (_use_opencl != 0) {
// Make sure you have write permission of the binary path.
// We strongly recommend each model has a unique binary name.
const std::string bin_path = "/data/local/tmp/";
const std::string bin_name = "lite_opencl_kernel.bin";
config.set_opencl_binary_path_name(bin_path, bin_name);
// opencl tune option
// CL_TUNE_NONE: 0
// CL_TUNE_RAPID: 1
// CL_TUNE_NORMAL: 2
// CL_TUNE_EXHAUSTIVE: 3
const std::string tuned_path = "/data/local/tmp/";
const std::string tuned_name = "lite_opencl_tuned.bin";
config.set_opencl_tune(paddle::lite_api::CL_TUNE_NORMAL, tuned_path, tuned_name);
// opencl precision option
// CL_PRECISION_AUTO: 0, first fp16 if valid, default
// CL_PRECISION_FP32: 1, force fp32
// CL_PRECISION_FP16: 2, force fp16
config.set_opencl_precision(paddle::lite_api::CL_PRECISION_FP32);
LOGI("ocr cpp device: running on gpu.");
}
} else {
LOGI("ocr cpp device: running on cpu.");
// you can give backup cpu nb model instead
// config.set_model_from_file(cpu_nb_model_dir);
}
config.set_threads(_thread_num);
config.set_power_mode(_mode);
_predictor = paddle::lite_api::CreatePaddlePredictor(config);
LOGI("paddle instance created");
LOGI("ocr cpp paddle instance created");
return RETURN_OK;
}
......@@ -43,18 +73,18 @@ std::vector<PredictorInput> PPredictor::get_inputs(int num) {
PredictorInput PPredictor::get_first_input() { return get_input(0); }
std::vector<PredictorOutput> PPredictor::infer() {
LOGI("infer Run start %d", _net_flag);
LOGI("ocr cpp infer Run start %d", _net_flag);
std::vector<PredictorOutput> results;
if (!_is_input_get) {
return results;
}
_predictor->Run();
LOGI("infer Run end");
LOGI("ocr cpp infer Run end");
for (int i = 0; i < _predictor->GetOutputNames().size(); i++) {
std::unique_ptr<const paddle::lite_api::Tensor> output_tensor =
_predictor->GetOutput(i);
LOGI("output tensor[%d] size %ld", i, product(output_tensor->shape()));
LOGI("ocr cpp output tensor[%d] size %ld", i, product(output_tensor->shape()));
PredictorOutput result{std::move(output_tensor), i, _net_flag};
results.emplace_back(std::move(result));
}
......
......@@ -22,7 +22,7 @@ public:
class PPredictor : public PPredictor_Interface {
public:
PPredictor(
int thread_num, int net_flag = 0,
int use_opencl, int thread_num, int net_flag = 0,
paddle::lite_api::PowerMode mode = paddle::lite_api::LITE_POWER_HIGH);
virtual ~PPredictor() {}
......@@ -54,6 +54,7 @@ protected:
template <typename ConfigT> int _init(ConfigT &config);
private:
int _use_opencl;
int _thread_num;
paddle::lite_api::PowerMode _mode;
std::shared_ptr<paddle::lite_api::PaddlePredictor> _predictor;
......
......@@ -13,6 +13,7 @@ import android.graphics.BitmapFactory;
import android.graphics.drawable.BitmapDrawable;
import android.media.ExifInterface;
import android.content.res.AssetManager;
import android.media.FaceDetector;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
......@@ -27,7 +28,9 @@ import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.CheckBox;
import android.widget.ImageView;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.Toast;
......@@ -68,23 +71,24 @@ public class MainActivity extends AppCompatActivity {
protected ImageView ivInputImage;
protected TextView tvOutputResult;
protected TextView tvInferenceTime;
protected CheckBox cbOpencl;
protected Spinner spRunMode;
// Model settings of object detection
// Model settings of ocr
protected String modelPath = "";
protected String labelPath = "";
protected String imagePath = "";
protected int cpuThreadNum = 1;
protected String cpuPowerMode = "";
protected String inputColorFormat = "";
protected long[] inputShape = new long[]{};
protected float[] inputMean = new float[]{};
protected float[] inputStd = new float[]{};
protected int detLongSize = 960;
protected float scoreThreshold = 0.1f;
private String currentPhotoPath;
private AssetManager assetManager =null;
private AssetManager assetManager = null;
protected Predictor predictor = new Predictor();
private Bitmap cur_predict_image = null;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
......@@ -98,10 +102,12 @@ public class MainActivity extends AppCompatActivity {
// Setup the UI components
tvInputSetting = findViewById(R.id.tv_input_setting);
cbOpencl = findViewById(R.id.cb_opencl);
tvStatus = findViewById(R.id.tv_model_img_status);
ivInputImage = findViewById(R.id.iv_input_image);
tvInferenceTime = findViewById(R.id.tv_inference_time);
tvOutputResult = findViewById(R.id.tv_output_result);
spRunMode = findViewById(R.id.sp_run_mode);
tvInputSetting.setMovementMethod(ScrollingMovementMethod.getInstance());
tvOutputResult.setMovementMethod(ScrollingMovementMethod.getInstance());
......@@ -111,26 +117,26 @@ public class MainActivity extends AppCompatActivity {
public void handleMessage(Message msg) {
switch (msg.what) {
case RESPONSE_LOAD_MODEL_SUCCESSED:
if(pbLoadModel!=null && pbLoadModel.isShowing()){
if (pbLoadModel != null && pbLoadModel.isShowing()) {
pbLoadModel.dismiss();
}
onLoadModelSuccessed();
break;
case RESPONSE_LOAD_MODEL_FAILED:
if(pbLoadModel!=null && pbLoadModel.isShowing()){
if (pbLoadModel != null && pbLoadModel.isShowing()) {
pbLoadModel.dismiss();
}
Toast.makeText(MainActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
onLoadModelFailed();
break;
case RESPONSE_RUN_MODEL_SUCCESSED:
if(pbRunModel!=null && pbRunModel.isShowing()){
if (pbRunModel != null && pbRunModel.isShowing()) {
pbRunModel.dismiss();
}
onRunModelSuccessed();
break;
case RESPONSE_RUN_MODEL_FAILED:
if(pbRunModel!=null && pbRunModel.isShowing()){
if (pbRunModel != null && pbRunModel.isShowing()) {
pbRunModel.dismiss();
}
Toast.makeText(MainActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
......@@ -175,71 +181,47 @@ public class MainActivity extends AppCompatActivity {
super.onResume();
SharedPreferences sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);
boolean settingsChanged = false;
boolean model_settingsChanged = false;
String model_path = sharedPreferences.getString(getString(R.string.MODEL_PATH_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
String label_path = sharedPreferences.getString(getString(R.string.LABEL_PATH_KEY),
getString(R.string.LABEL_PATH_DEFAULT));
String image_path = sharedPreferences.getString(getString(R.string.IMAGE_PATH_KEY),
getString(R.string.IMAGE_PATH_DEFAULT));
settingsChanged |= !model_path.equalsIgnoreCase(modelPath);
model_settingsChanged |= !model_path.equalsIgnoreCase(modelPath);
settingsChanged |= !label_path.equalsIgnoreCase(labelPath);
settingsChanged |= !image_path.equalsIgnoreCase(imagePath);
int cpu_thread_num = Integer.parseInt(sharedPreferences.getString(getString(R.string.CPU_THREAD_NUM_KEY),
getString(R.string.CPU_THREAD_NUM_DEFAULT)));
settingsChanged |= cpu_thread_num != cpuThreadNum;
model_settingsChanged |= cpu_thread_num != cpuThreadNum;
String cpu_power_mode =
sharedPreferences.getString(getString(R.string.CPU_POWER_MODE_KEY),
getString(R.string.CPU_POWER_MODE_DEFAULT));
settingsChanged |= !cpu_power_mode.equalsIgnoreCase(cpuPowerMode);
String input_color_format =
sharedPreferences.getString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
settingsChanged |= !input_color_format.equalsIgnoreCase(inputColorFormat);
long[] input_shape =
Utils.parseLongsFromString(sharedPreferences.getString(getString(R.string.INPUT_SHAPE_KEY),
getString(R.string.INPUT_SHAPE_DEFAULT)), ",");
float[] input_mean =
Utils.parseFloatsFromString(sharedPreferences.getString(getString(R.string.INPUT_MEAN_KEY),
getString(R.string.INPUT_MEAN_DEFAULT)), ",");
float[] input_std =
Utils.parseFloatsFromString(sharedPreferences.getString(getString(R.string.INPUT_STD_KEY)
, getString(R.string.INPUT_STD_DEFAULT)), ",");
settingsChanged |= input_shape.length != inputShape.length;
settingsChanged |= input_mean.length != inputMean.length;
settingsChanged |= input_std.length != inputStd.length;
if (!settingsChanged) {
for (int i = 0; i < input_shape.length; i++) {
settingsChanged |= input_shape[i] != inputShape[i];
}
for (int i = 0; i < input_mean.length; i++) {
settingsChanged |= input_mean[i] != inputMean[i];
}
for (int i = 0; i < input_std.length; i++) {
settingsChanged |= input_std[i] != inputStd[i];
}
}
model_settingsChanged |= !cpu_power_mode.equalsIgnoreCase(cpuPowerMode);
int det_long_size = Integer.parseInt(sharedPreferences.getString(getString(R.string.DET_LONG_SIZE_KEY),
getString(R.string.DET_LONG_SIZE_DEFAULT)));
settingsChanged |= det_long_size != detLongSize;
float score_threshold =
Float.parseFloat(sharedPreferences.getString(getString(R.string.SCORE_THRESHOLD_KEY),
getString(R.string.SCORE_THRESHOLD_DEFAULT)));
settingsChanged |= scoreThreshold != score_threshold;
if (settingsChanged) {
modelPath = model_path;
labelPath = label_path;
imagePath = image_path;
detLongSize = det_long_size;
scoreThreshold = score_threshold;
set_img();
}
if (model_settingsChanged) {
modelPath = model_path;
cpuThreadNum = cpu_thread_num;
cpuPowerMode = cpu_power_mode;
inputColorFormat = input_color_format;
inputShape = input_shape;
inputMean = input_mean;
inputStd = input_std;
scoreThreshold = score_threshold;
// Update UI
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\n" + "CPU" +
" Thread Num: " + Integer.toString(cpuThreadNum) + "\n" + "CPU Power Mode: " + cpuPowerMode);
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\nOPENCL: " + cbOpencl.isChecked() + "\nCPU Thread Num: " + cpuThreadNum + "\nCPU Power Mode: " + cpuPowerMode);
tvInputSetting.scrollTo(0, 0);
// Reload model if configure has been changed
// loadModel();
set_img();
loadModel();
}
}
......@@ -254,20 +236,28 @@ public class MainActivity extends AppCompatActivity {
}
public boolean onLoadModel() {
return predictor.init(MainActivity.this, modelPath, labelPath, cpuThreadNum,
if (predictor.isLoaded()) {
predictor.releaseModel();
}
return predictor.init(MainActivity.this, modelPath, labelPath, cbOpencl.isChecked() ? 1 : 0, cpuThreadNum,
cpuPowerMode,
inputColorFormat,
inputShape, inputMean,
inputStd, scoreThreshold);
detLongSize, scoreThreshold);
}
public boolean onRunModel() {
return predictor.isLoaded() && predictor.runModel();
String run_mode = spRunMode.getSelectedItem().toString();
int run_det = run_mode.contains("检测") ? 1 : 0;
int run_cls = run_mode.contains("分类") ? 1 : 0;
int run_rec = run_mode.contains("识别") ? 1 : 0;
return predictor.isLoaded() && predictor.runModel(run_det, run_cls, run_rec);
}
public void onLoadModelSuccessed() {
// Load test image from path and run model
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\nOPENCL: " + cbOpencl.isChecked() + "\nCPU Thread Num: " + cpuThreadNum + "\nCPU Power Mode: " + cpuPowerMode);
tvInputSetting.scrollTo(0, 0);
tvStatus.setText("STATUS: load model successed");
}
public void onLoadModelFailed() {
......@@ -290,20 +280,13 @@ public class MainActivity extends AppCompatActivity {
tvStatus.setText("STATUS: run model failed");
}
public void onImageChanged(Bitmap image) {
// Rerun model if users pick test image from gallery or camera
if (image != null && predictor.isLoaded()) {
predictor.setInputImage(image);
runModel();
}
}
public void set_img() {
// Load test image from path and run model
try {
assetManager= getAssets();
InputStream in=assetManager.open(imagePath);
Bitmap bmp=BitmapFactory.decodeStream(in);
assetManager = getAssets();
InputStream in = assetManager.open(imagePath);
Bitmap bmp = BitmapFactory.decodeStream(in);
cur_predict_image = bmp;
ivInputImage.setImageBitmap(bmp);
} catch (IOException e) {
Toast.makeText(MainActivity.this, "Load image failed!", Toast.LENGTH_SHORT).show();
......@@ -430,7 +413,7 @@ public class MainActivity extends AppCompatActivity {
Cursor cursor = managedQuery(uri, proj, null, null, null);
cursor.moveToFirst();
if (image != null) {
// onImageChanged(image);
cur_predict_image = image;
ivInputImage.setImageBitmap(image);
}
} catch (IOException e) {
......@@ -451,7 +434,7 @@ public class MainActivity extends AppCompatActivity {
Bitmap image = BitmapFactory.decodeFile(currentPhotoPath);
image = Utils.rotateBitmap(image, orientation);
if (image != null) {
// onImageChanged(image);
cur_predict_image = image;
ivInputImage.setImageBitmap(image);
}
} else {
......@@ -464,28 +447,28 @@ public class MainActivity extends AppCompatActivity {
}
}
public void btn_load_model_click(View view) {
if (predictor.isLoaded()){
tvStatus.setText("STATUS: model has been loaded");
}else{
tvStatus.setText("STATUS: load model ......");
loadModel();
}
public void btn_reset_img_click(View view) {
ivInputImage.setImageBitmap(cur_predict_image);
}
public void cb_opencl_click(View view) {
tvStatus.setText("STATUS: load model ......");
loadModel();
}
public void btn_run_model_click(View view) {
Bitmap image =((BitmapDrawable)ivInputImage.getDrawable()).getBitmap();
if(image == null) {
Bitmap image = ((BitmapDrawable) ivInputImage.getDrawable()).getBitmap();
if (image == null) {
tvStatus.setText("STATUS: image is not exists");
}
else if (!predictor.isLoaded()){
} else if (!predictor.isLoaded()) {
tvStatus.setText("STATUS: model is not loaded");
}else{
} else {
tvStatus.setText("STATUS: run model ...... ");
predictor.setInputImage(image);
runModel();
}
}
public void btn_choice_img_click(View view) {
if (requestAllPermissions()) {
openGallery();
......@@ -506,4 +489,32 @@ public class MainActivity extends AppCompatActivity {
worker.quit();
super.onDestroy();
}
public int get_run_mode() {
String run_mode = spRunMode.getSelectedItem().toString();
int mode;
switch (run_mode) {
case "检测+分类+识别":
mode = 1;
break;
case "检测+识别":
mode = 2;
break;
case "识别+分类":
mode = 3;
break;
case "检测":
mode = 4;
break;
case "识别":
mode = 5;
break;
case "分类":
mode = 6;
break;
default:
mode = 1;
}
return mode;
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Build;
import android.os.Bundle;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Message;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import java.io.IOException;
import java.io.InputStream;
public class MiniActivity extends AppCompatActivity {
public static final int REQUEST_LOAD_MODEL = 0;
public static final int REQUEST_RUN_MODEL = 1;
public static final int REQUEST_UNLOAD_MODEL = 2;
public static final int RESPONSE_LOAD_MODEL_SUCCESSED = 0;
public static final int RESPONSE_LOAD_MODEL_FAILED = 1;
public static final int RESPONSE_RUN_MODEL_SUCCESSED = 2;
public static final int RESPONSE_RUN_MODEL_FAILED = 3;
private static final String TAG = "MiniActivity";
protected Handler receiver = null; // Receive messages from worker thread
protected Handler sender = null; // Send command to worker thread
protected HandlerThread worker = null; // Worker thread to load&run model
protected volatile Predictor predictor = null;
private String assetModelDirPath = "models/ocr_v2_for_cpu";
private String assetlabelFilePath = "labels/ppocr_keys_v1.txt";
private Button button;
private ImageView imageView; // image result
private TextView textView; // text result
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_mini);
Log.i(TAG, "SHOW in Logcat");
// Prepare the worker thread for mode loading and inference
worker = new HandlerThread("Predictor Worker");
worker.start();
sender = new Handler(worker.getLooper()) {
public void handleMessage(Message msg) {
switch (msg.what) {
case REQUEST_LOAD_MODEL:
// Load model and reload test image
if (!onLoadModel()) {
runOnUiThread(new Runnable() {
@Override
public void run() {
Toast.makeText(MiniActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
}
});
}
break;
case REQUEST_RUN_MODEL:
// Run model if model is loaded
final boolean isSuccessed = onRunModel();
runOnUiThread(new Runnable() {
@Override
public void run() {
if (isSuccessed){
onRunModelSuccessed();
}else{
Toast.makeText(MiniActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
}
}
});
break;
}
}
};
sender.sendEmptyMessage(REQUEST_LOAD_MODEL); // corresponding to REQUEST_LOAD_MODEL, to call onLoadModel()
imageView = findViewById(R.id.imageView);
textView = findViewById(R.id.sample_text);
button = findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
sender.sendEmptyMessage(REQUEST_RUN_MODEL);
}
});
}
@Override
protected void onDestroy() {
onUnloadModel();
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
worker.quitSafely();
} else {
worker.quit();
}
super.onDestroy();
}
/**
* call in onCreate, model init
*
* @return
*/
private boolean onLoadModel() {
if (predictor == null) {
predictor = new Predictor();
}
return predictor.init(this, assetModelDirPath, assetlabelFilePath);
}
/**
* init engine
* call in onCreate
*
* @return
*/
private boolean onRunModel() {
try {
String assetImagePath = "images/0.jpg";
InputStream imageStream = getAssets().open(assetImagePath);
Bitmap image = BitmapFactory.decodeStream(imageStream);
// Input is Bitmap
predictor.setInputImage(image);
return predictor.isLoaded() && predictor.runModel();
} catch (IOException e) {
e.printStackTrace();
return false;
}
}
private void onRunModelSuccessed() {
Log.i(TAG, "onRunModelSuccessed");
textView.setText(predictor.outputResult);
imageView.setImageBitmap(predictor.outputImage);
}
private void onUnloadModel() {
if (predictor != null) {
predictor.releaseModel();
}
}
}
......@@ -29,22 +29,22 @@ public class OCRPredictorNative {
public OCRPredictorNative(Config config) {
this.config = config;
loadLibrary();
nativePointer = init(config.detModelFilename, config.recModelFilename,config.clsModelFilename,
nativePointer = init(config.detModelFilename, config.recModelFilename, config.clsModelFilename, config.useOpencl,
config.cpuThreadNum, config.cpuPower);
Log.i("OCRPredictorNative", "load success " + nativePointer);
}
public ArrayList<OcrResultModel> runImage(float[] inputData, int width, int height, int channels, Bitmap originalImage) {
Log.i("OCRPredictorNative", "begin to run image " + inputData.length + " " + width + " " + height);
float[] dims = new float[]{1, channels, height, width};
float[] rawResults = forward(nativePointer, inputData, dims, originalImage);
public ArrayList<OcrResultModel> runImage(Bitmap originalImage, int max_size_len, int run_det, int run_cls, int run_rec) {
Log.i("OCRPredictorNative", "begin to run image ");
float[] rawResults = forward(nativePointer, originalImage, max_size_len, run_det, run_cls, run_rec);
ArrayList<OcrResultModel> results = postprocess(rawResults);
return results;
}
public static class Config {
public int useOpencl;
public int cpuThreadNum;
public String cpuPower;
public String detModelFilename;
......@@ -53,16 +53,16 @@ public class OCRPredictorNative {
}
public void destory(){
public void destory() {
if (nativePointer > 0) {
release(nativePointer);
nativePointer = 0;
}
}
protected native long init(String detModelPath, String recModelPath,String clsModelPath, int threadNum, String cpuMode);
protected native long init(String detModelPath, String recModelPath, String clsModelPath, int useOpencl, int threadNum, String cpuMode);
protected native float[] forward(long pointer, float[] buf, float[] ddims, Bitmap originalImage);
protected native float[] forward(long pointer, Bitmap originalImage,int max_size_len, int run_det, int run_cls, int run_rec);
protected native void release(long pointer);
......@@ -73,9 +73,9 @@ public class OCRPredictorNative {
while (begin < raw.length) {
int point_num = Math.round(raw[begin]);
int word_num = Math.round(raw[begin + 1]);
OcrResultModel model = parse(raw, begin + 2, point_num, word_num);
begin += 2 + 1 + point_num * 2 + word_num;
results.add(model);
OcrResultModel res = parse(raw, begin + 2, point_num, word_num);
begin += 2 + 1 + point_num * 2 + word_num + 2;
results.add(res);
}
return results;
......@@ -83,19 +83,22 @@ public class OCRPredictorNative {
private OcrResultModel parse(float[] raw, int begin, int pointNum, int wordNum) {
int current = begin;
OcrResultModel model = new OcrResultModel();
model.setConfidence(raw[current]);
OcrResultModel res = new OcrResultModel();
res.setConfidence(raw[current]);
current++;
for (int i = 0; i < pointNum; i++) {
model.addPoints(Math.round(raw[current + i * 2]), Math.round(raw[current + i * 2 + 1]));
res.addPoints(Math.round(raw[current + i * 2]), Math.round(raw[current + i * 2 + 1]));
}
current += (pointNum * 2);
for (int i = 0; i < wordNum; i++) {
int index = Math.round(raw[current + i]);
model.addWordIndex(index);
res.addWordIndex(index);
}
current += wordNum;
res.setClsIdx(raw[current]);
res.setClsConfidence(raw[current + 1]);
Log.i("OCRPredictorNative", "word finished " + wordNum);
return model;
return res;
}
......
......@@ -10,6 +10,9 @@ public class OcrResultModel {
private List<Integer> wordIndex;
private String label;
private float confidence;
private float cls_idx;
private String cls_label;
private float cls_confidence;
public OcrResultModel() {
super();
......@@ -49,4 +52,28 @@ public class OcrResultModel {
public void setConfidence(float confidence) {
this.confidence = confidence;
}
public float getClsIdx() {
return cls_idx;
}
public void setClsIdx(float idx) {
this.cls_idx = idx;
}
public String getClsLabel() {
return cls_label;
}
public void setClsLabel(String label) {
this.cls_label = label;
}
public float getClsConfidence() {
return cls_confidence;
}
public void setClsConfidence(float confidence) {
this.cls_confidence = confidence;
}
}
......@@ -31,23 +31,19 @@ public class Predictor {
protected float inferenceTime = 0;
// Only for object detection
protected Vector<String> wordLabels = new Vector<String>();
protected String inputColorFormat = "BGR";
protected long[] inputShape = new long[]{1, 3, 960};
protected float[] inputMean = new float[]{0.485f, 0.456f, 0.406f};
protected float[] inputStd = new float[]{1.0f / 0.229f, 1.0f / 0.224f, 1.0f / 0.225f};
protected int detLongSize = 960;
protected float scoreThreshold = 0.1f;
protected Bitmap inputImage = null;
protected Bitmap outputImage = null;
protected volatile String outputResult = "";
protected float preprocessTime = 0;
protected float postprocessTime = 0;
public Predictor() {
}
public boolean init(Context appCtx, String modelPath, String labelPath) {
isLoaded = loadModel(appCtx, modelPath, cpuThreadNum, cpuPowerMode);
public boolean init(Context appCtx, String modelPath, String labelPath, int useOpencl, int cpuThreadNum, String cpuPowerMode) {
isLoaded = loadModel(appCtx, modelPath, useOpencl, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
......@@ -56,49 +52,18 @@ public class Predictor {
}
public boolean init(Context appCtx, String modelPath, String labelPath, int cpuThreadNum, String cpuPowerMode,
String inputColorFormat,
long[] inputShape, float[] inputMean,
float[] inputStd, float scoreThreshold) {
if (inputShape.length != 3) {
Log.e(TAG, "Size of input shape should be: 3");
return false;
}
if (inputMean.length != inputShape[1]) {
Log.e(TAG, "Size of input mean should be: " + Long.toString(inputShape[1]));
return false;
}
if (inputStd.length != inputShape[1]) {
Log.e(TAG, "Size of input std should be: " + Long.toString(inputShape[1]));
return false;
}
if (inputShape[0] != 1) {
Log.e(TAG, "Only one batch is supported in the image classification demo, you can use any batch size in " +
"your Apps!");
return false;
}
if (inputShape[1] != 1 && inputShape[1] != 3) {
Log.e(TAG, "Only one/three channels are supported in the image classification demo, you can use any " +
"channel size in your Apps!");
return false;
}
if (!inputColorFormat.equalsIgnoreCase("BGR")) {
Log.e(TAG, "Only BGR color format is supported.");
return false;
}
boolean isLoaded = init(appCtx, modelPath, labelPath);
public boolean init(Context appCtx, String modelPath, String labelPath, int useOpencl, int cpuThreadNum, String cpuPowerMode,
int detLongSize, float scoreThreshold) {
boolean isLoaded = init(appCtx, modelPath, labelPath, useOpencl, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
this.inputColorFormat = inputColorFormat;
this.inputShape = inputShape;
this.inputMean = inputMean;
this.inputStd = inputStd;
this.detLongSize = detLongSize;
this.scoreThreshold = scoreThreshold;
return true;
}
protected boolean loadModel(Context appCtx, String modelPath, int cpuThreadNum, String cpuPowerMode) {
protected boolean loadModel(Context appCtx, String modelPath, int useOpencl, int cpuThreadNum, String cpuPowerMode) {
// Release model if exists
releaseModel();
......@@ -118,12 +83,13 @@ public class Predictor {
}
OCRPredictorNative.Config config = new OCRPredictorNative.Config();
config.useOpencl = useOpencl;
config.cpuThreadNum = cpuThreadNum;
config.detModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_det_opt.nb";
config.recModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_rec_opt.nb";
config.clsModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_cls_opt.nb";
Log.e("Predictor", "model path" + config.detModelFilename + " ; " + config.recModelFilename + ";" + config.clsModelFilename);
config.cpuPower = cpuPowerMode;
config.detModelFilename = realPath + File.separator + "det_db.nb";
config.recModelFilename = realPath + File.separator + "rec_crnn.nb";
config.clsModelFilename = realPath + File.separator + "cls.nb";
Log.i("Predictor", "model path" + config.detModelFilename + " ; " + config.recModelFilename + ";" + config.clsModelFilename);
paddlePredictor = new OCRPredictorNative(config);
this.cpuThreadNum = cpuThreadNum;
......@@ -170,82 +136,29 @@ public class Predictor {
}
public boolean runModel() {
public boolean runModel(int run_det, int run_cls, int run_rec) {
if (inputImage == null || !isLoaded()) {
return false;
}
// Pre-process image, and feed input tensor with pre-processed data
Bitmap scaleImage = Utils.resizeWithStep(inputImage, Long.valueOf(inputShape[2]).intValue(), 32);
Date start = new Date();
int channels = (int) inputShape[1];
int width = scaleImage.getWidth();
int height = scaleImage.getHeight();
float[] inputData = new float[channels * width * height];
if (channels == 3) {
int[] channelIdx = null;
if (inputColorFormat.equalsIgnoreCase("RGB")) {
channelIdx = new int[]{0, 1, 2};
} else if (inputColorFormat.equalsIgnoreCase("BGR")) {
channelIdx = new int[]{2, 1, 0};
} else {
Log.i(TAG, "Unknown color format " + inputColorFormat + ", only RGB and BGR color format is " +
"supported!");
return false;
}
int[] channelStride = new int[]{width * height, width * height * 2};
int[] pixels=new int[width*height];
scaleImage.getPixels(pixels,0,scaleImage.getWidth(),0,0,scaleImage.getWidth(),scaleImage.getHeight());
for (int i = 0; i < pixels.length; i++) {
int color = pixels[i];
float[] rgb = new float[]{(float) red(color) / 255.0f, (float) green(color) / 255.0f,
(float) blue(color) / 255.0f};
inputData[i] = (rgb[channelIdx[0]] - inputMean[0]) / inputStd[0];
inputData[i + channelStride[0]] = (rgb[channelIdx[1]] - inputMean[1]) / inputStd[1];
inputData[i+ channelStride[1]] = (rgb[channelIdx[2]] - inputMean[2]) / inputStd[2];
}
} else if (channels == 1) {
int[] pixels=new int[width*height];
scaleImage.getPixels(pixels,0,scaleImage.getWidth(),0,0,scaleImage.getWidth(),scaleImage.getHeight());
for (int i = 0; i < pixels.length; i++) {
int color = pixels[i];
float gray = (float) (red(color) + green(color) + blue(color)) / 3.0f / 255.0f;
inputData[i] = (gray - inputMean[0]) / inputStd[0];
}
} else {
Log.i(TAG, "Unsupported channel size " + Integer.toString(channels) + ", only channel 1 and 3 is " +
"supported!");
return false;
}
float[] pixels = inputData;
Log.i(TAG, "pixels " + pixels[0] + " " + pixels[1] + " " + pixels[2] + " " + pixels[3]
+ " " + pixels[pixels.length / 2] + " " + pixels[pixels.length / 2 + 1] + " " + pixels[pixels.length - 2] + " " + pixels[pixels.length - 1]);
Date end = new Date();
preprocessTime = (float) (end.getTime() - start.getTime());
// Warm up
for (int i = 0; i < warmupIterNum; i++) {
paddlePredictor.runImage(inputData, width, height, channels, inputImage);
paddlePredictor.runImage(inputImage, detLongSize, run_det, run_cls, run_rec);
}
warmupIterNum = 0; // do not need warm
// Run inference
start = new Date();
ArrayList<OcrResultModel> results = paddlePredictor.runImage(inputData, width, height, channels, inputImage);
end = new Date();
Date start = new Date();
ArrayList<OcrResultModel> results = paddlePredictor.runImage(inputImage, detLongSize, run_det, run_cls, run_rec);
Date end = new Date();
inferenceTime = (end.getTime() - start.getTime()) / (float) inferIterNum;
results = postprocess(results);
Log.i(TAG, "[stat] Preprocess Time: " + preprocessTime
+ " ; Inference Time: " + inferenceTime + " ;Box Size " + results.size());
Log.i(TAG, "[stat] Inference Time: " + inferenceTime + " ;Box Size " + results.size());
drawResults(results);
return true;
}
public boolean isLoaded() {
return paddlePredictor != null && isLoaded;
}
......@@ -282,10 +195,6 @@ public class Predictor {
return outputResult;
}
public float preprocessTime() {
return preprocessTime;
}
public float postprocessTime() {
return postprocessTime;
}
......@@ -310,6 +219,7 @@ public class Predictor {
}
}
r.setLabel(word.toString());
r.setClsLabel(r.getClsIdx() == 1 ? "180" : "0");
}
return results;
}
......@@ -319,14 +229,22 @@ public class Predictor {
for (int i = 0; i < results.size(); i++) {
OcrResultModel result = results.get(i);
StringBuilder sb = new StringBuilder("");
sb.append(result.getLabel());
sb.append(" ").append(result.getConfidence());
sb.append("; Points: ");
for (Point p : result.getPoints()) {
sb.append("(").append(p.x).append(",").append(p.y).append(") ");
if(result.getPoints().size()>0){
sb.append("Det: ");
for (Point p : result.getPoints()) {
sb.append("(").append(p.x).append(",").append(p.y).append(") ");
}
}
if(result.getLabel().length() > 0){
sb.append("\n Rec: ").append(result.getLabel());
sb.append(",").append(result.getConfidence());
}
if(result.getClsIdx()!=-1){
sb.append(" Cls: ").append(result.getClsLabel());
sb.append(",").append(result.getClsConfidence());
}
Log.i(TAG, sb.toString()); // show LOG in Logcat panel
outputResultSb.append(i + 1).append(": ").append(result.getLabel()).append("\n");
outputResultSb.append(i + 1).append(": ").append(sb.toString()).append("\n");
}
outputResult = outputResultSb.toString();
outputImage = inputImage;
......@@ -344,6 +262,9 @@ public class Predictor {
for (OcrResultModel result : results) {
Path path = new Path();
List<Point> points = result.getPoints();
if(points.size()==0){
continue;
}
path.moveTo(points.get(0).x, points.get(0).y);
for (int i = points.size() - 1; i >= 0; i--) {
Point p = points.get(i);
......
......@@ -20,16 +20,13 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
ListPreference etImagePath = null;
ListPreference lpCPUThreadNum = null;
ListPreference lpCPUPowerMode = null;
ListPreference lpInputColorFormat = null;
EditTextPreference etInputShape = null;
EditTextPreference etInputMean = null;
EditTextPreference etInputStd = null;
EditTextPreference etDetLongSize = null;
EditTextPreference etScoreThreshold = null;
List<String> preInstalledModelPaths = null;
List<String> preInstalledLabelPaths = null;
List<String> preInstalledImagePaths = null;
List<String> preInstalledInputShapes = null;
List<String> preInstalledDetLongSizes = null;
List<String> preInstalledCPUThreadNums = null;
List<String> preInstalledCPUPowerModes = null;
List<String> preInstalledInputColorFormats = null;
......@@ -50,7 +47,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
preInstalledModelPaths = new ArrayList<String>();
preInstalledLabelPaths = new ArrayList<String>();
preInstalledImagePaths = new ArrayList<String>();
preInstalledInputShapes = new ArrayList<String>();
preInstalledDetLongSizes = new ArrayList<String>();
preInstalledCPUThreadNums = new ArrayList<String>();
preInstalledCPUPowerModes = new ArrayList<String>();
preInstalledInputColorFormats = new ArrayList<String>();
......@@ -63,10 +60,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
preInstalledImagePaths.add(getString(R.string.IMAGE_PATH_DEFAULT));
preInstalledCPUThreadNums.add(getString(R.string.CPU_THREAD_NUM_DEFAULT));
preInstalledCPUPowerModes.add(getString(R.string.CPU_POWER_MODE_DEFAULT));
preInstalledInputColorFormats.add(getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
preInstalledInputShapes.add(getString(R.string.INPUT_SHAPE_DEFAULT));
preInstalledInputMeans.add(getString(R.string.INPUT_MEAN_DEFAULT));
preInstalledInputStds.add(getString(R.string.INPUT_STD_DEFAULT));
preInstalledDetLongSizes.add(getString(R.string.DET_LONG_SIZE_DEFAULT));
preInstalledScoreThresholds.add(getString(R.string.SCORE_THRESHOLD_DEFAULT));
// Setup UI components
......@@ -89,11 +83,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
(ListPreference) findPreference(getString(R.string.CPU_THREAD_NUM_KEY));
lpCPUPowerMode =
(ListPreference) findPreference(getString(R.string.CPU_POWER_MODE_KEY));
lpInputColorFormat =
(ListPreference) findPreference(getString(R.string.INPUT_COLOR_FORMAT_KEY));
etInputShape = (EditTextPreference) findPreference(getString(R.string.INPUT_SHAPE_KEY));
etInputMean = (EditTextPreference) findPreference(getString(R.string.INPUT_MEAN_KEY));
etInputStd = (EditTextPreference) findPreference(getString(R.string.INPUT_STD_KEY));
etDetLongSize = (EditTextPreference) findPreference(getString(R.string.DET_LONG_SIZE_KEY));
etScoreThreshold = (EditTextPreference) findPreference(getString(R.string.SCORE_THRESHOLD_KEY));
}
......@@ -112,11 +102,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
editor.putString(getString(R.string.IMAGE_PATH_KEY), preInstalledImagePaths.get(modelIdx));
editor.putString(getString(R.string.CPU_THREAD_NUM_KEY), preInstalledCPUThreadNums.get(modelIdx));
editor.putString(getString(R.string.CPU_POWER_MODE_KEY), preInstalledCPUPowerModes.get(modelIdx));
editor.putString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
preInstalledInputColorFormats.get(modelIdx));
editor.putString(getString(R.string.INPUT_SHAPE_KEY), preInstalledInputShapes.get(modelIdx));
editor.putString(getString(R.string.INPUT_MEAN_KEY), preInstalledInputMeans.get(modelIdx));
editor.putString(getString(R.string.INPUT_STD_KEY), preInstalledInputStds.get(modelIdx));
editor.putString(getString(R.string.DET_LONG_SIZE_KEY), preInstalledDetLongSizes.get(modelIdx));
editor.putString(getString(R.string.SCORE_THRESHOLD_KEY),
preInstalledScoreThresholds.get(modelIdx));
editor.apply();
......@@ -129,10 +115,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
etImagePath.setEnabled(enableCustomSettings);
lpCPUThreadNum.setEnabled(enableCustomSettings);
lpCPUPowerMode.setEnabled(enableCustomSettings);
lpInputColorFormat.setEnabled(enableCustomSettings);
etInputShape.setEnabled(enableCustomSettings);
etInputMean.setEnabled(enableCustomSettings);
etInputStd.setEnabled(enableCustomSettings);
etDetLongSize.setEnabled(enableCustomSettings);
etScoreThreshold.setEnabled(enableCustomSettings);
modelPath = sharedPreferences.getString(getString(R.string.MODEL_PATH_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
......@@ -144,14 +127,8 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
getString(R.string.CPU_THREAD_NUM_DEFAULT));
String cpuPowerMode = sharedPreferences.getString(getString(R.string.CPU_POWER_MODE_KEY),
getString(R.string.CPU_POWER_MODE_DEFAULT));
String inputColorFormat = sharedPreferences.getString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
String inputShape = sharedPreferences.getString(getString(R.string.INPUT_SHAPE_KEY),
getString(R.string.INPUT_SHAPE_DEFAULT));
String inputMean = sharedPreferences.getString(getString(R.string.INPUT_MEAN_KEY),
getString(R.string.INPUT_MEAN_DEFAULT));
String inputStd = sharedPreferences.getString(getString(R.string.INPUT_STD_KEY),
getString(R.string.INPUT_STD_DEFAULT));
String detLongSize = sharedPreferences.getString(getString(R.string.DET_LONG_SIZE_KEY),
getString(R.string.DET_LONG_SIZE_DEFAULT));
String scoreThreshold = sharedPreferences.getString(getString(R.string.SCORE_THRESHOLD_KEY),
getString(R.string.SCORE_THRESHOLD_DEFAULT));
etModelPath.setSummary(modelPath);
......@@ -164,14 +141,8 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
lpCPUThreadNum.setSummary(cpuThreadNum);
lpCPUPowerMode.setValue(cpuPowerMode);
lpCPUPowerMode.setSummary(cpuPowerMode);
lpInputColorFormat.setValue(inputColorFormat);
lpInputColorFormat.setSummary(inputColorFormat);
etInputShape.setSummary(inputShape);
etInputShape.setText(inputShape);
etInputMean.setSummary(inputMean);
etInputMean.setText(inputMean);
etInputStd.setSummary(inputStd);
etInputStd.setText(inputStd);
etDetLongSize.setSummary(detLongSize);
etDetLongSize.setText(detLongSize);
etScoreThreshold.setText(scoreThreshold);
etScoreThreshold.setSummary(scoreThreshold);
}
......
......@@ -23,13 +23,7 @@
android:layout_height="wrap_content"
android:orientation="horizontal">
<Button
android:id="@+id/btn_load_model"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_load_model_click"
android:text="加载模型" />
<Button
android:id="@+id/btn_run_model"
android:layout_width="0dp"
......@@ -52,7 +46,45 @@
android:onClick="btn_choice_img_click"
android:text="选取图片" />
<Button
android:id="@+id/btn_reset_img"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_reset_img_click"
android:text="清空绘图" />
</LinearLayout>
<LinearLayout
android:id="@+id/run_mode_layout"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">
<CheckBox
android:id="@+id/cb_opencl"
android:layout_width="0dp"
android:layout_weight="1"
android:layout_height="wrap_content"
android:text="开启OPENCL"
android:onClick="cb_opencl_click"
android:visibility="gone"/>
<TextView
android:layout_width="0dp"
android:layout_weight="0.5"
android:layout_height="wrap_content"
android:text="运行模式:"/>
<Spinner
android:id="@+id/sp_run_mode"
android:layout_width="0dp"
android:layout_weight="1.5"
android:layout_height="wrap_content"
android:entries="@array/run_Model"
/>
</LinearLayout>
<TextView
android:id="@+id/tv_input_setting"
android:layout_width="wrap_content"
......@@ -60,7 +92,7 @@
android:scrollbars="vertical"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="10dp"
android:layout_marginTop="5dp"
android:layout_marginBottom="5dp"
android:lineSpacingExtra="4dp"
android:singleLine="false"
......
<?xml version="1.0" encoding="utf-8"?>
<!-- for MiniActivity Use Only -->
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintLeft_toRightOf="parent"
tools:context=".MainActivity">
<TextView
android:id="@+id/sample_text"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="@id/imageView"
android:scrollbars="vertical"
/>
<ImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingTop="20dp"
android:paddingBottom="20dp"
app:layout_constraintBottom_toTopOf="@id/imageView"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:srcCompat="@tools:sample/avatars" />
<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="4dp"
android:text="Button"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
tools:layout_editor_absoluteX="161dp" />
</androidx.constraintlayout.widget.ConstraintLayout>
\ No newline at end of file
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -45,7 +45,7 @@ python3 setup.py install
'conv10_expand_weights': {0.1: 0.006509952684312718, 0.2: 0.01827734339798862, 0.3: 0.014528405644659832, 0.6: 0.06536008804270439, 0.8: 0.11798612250664964, 0.7: 0.12391408417493704, 0.4: 0.030615754498018757, 0.5: 0.047105205602406594}
'conv10_linear_weights': {0.1: 0.05113190831455035, 0.2: 0.07705573833558801, 0.3: 0.12096721757739311, 0.6: 0.5135061352930738, 0.8: 0.7908166677143281, 0.7: 0.7272187676899062, 0.4: 0.1819252083008504, 0.5: 0.3728054727792405}
}
加载敏感度文件后会返回一个字典,字典中的keys为网络模型参数模型的名字,values为一个字典,里面保存了相应网络层的裁剪敏感度信息。例如在例子中,conv10_expand_weights所对应的网络层在裁掉10%的卷积核后模型性能相较原模型会下降0.65%,详细信息可见[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/algo/algo.md#2-%E5%8D%B7%E7%A7%AF%E6%A0%B8%E5%89%AA%E8%A3%81%E5%8E%9F%E7%90%86)
加载敏感度文件后会返回一个字典,字典中的keys为网络模型参数模型的名字,values为一个字典,里面保存了相应网络层的裁剪敏感度信息。例如在例子中,conv10_expand_weights所对应的网络层在裁掉10%的卷积核后模型性能相较原模型会下降0.65%,详细信息可见[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0-alpha/docs/zh_cn/algo/algo.md)
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
```bash
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
doc/joinus.PNG

199.5 KB | W: | H:

doc/joinus.PNG

198.7 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册