提交 4561fbf1 编写于 作者: L LDOUBLEV

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into fix_cpp

...@@ -42,7 +42,7 @@ public: ...@@ -42,7 +42,7 @@ public:
const int &gpu_id, const int &gpu_mem, const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads, const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const double &cls_thresh, const bool &use_mkldnn, const double &cls_thresh,
const bool &use_tensorrt, const bool &use_fp16) { const bool &use_tensorrt, const std::string &precision) {
this->use_gpu_ = use_gpu; this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id; this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem; this->gpu_mem_ = gpu_mem;
...@@ -51,7 +51,7 @@ public: ...@@ -51,7 +51,7 @@ public:
this->cls_thresh = cls_thresh; this->cls_thresh = cls_thresh;
this->use_tensorrt_ = use_tensorrt; this->use_tensorrt_ = use_tensorrt;
this->use_fp16_ = use_fp16; this->precision_ = precision;
LoadModel(model_dir); LoadModel(model_dir);
} }
...@@ -75,7 +75,7 @@ private: ...@@ -75,7 +75,7 @@ private:
std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f}; std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
bool is_scale_ = true; bool is_scale_ = true;
bool use_tensorrt_ = false; bool use_tensorrt_ = false;
bool use_fp16_ = false; std::string precision_ = "fp32";
// pre-process // pre-process
ClsResizeImg resize_op_; ClsResizeImg resize_op_;
Normalize normalize_op_; Normalize normalize_op_;
......
...@@ -46,7 +46,7 @@ public: ...@@ -46,7 +46,7 @@ public:
const double &det_db_box_thresh, const double &det_db_box_thresh,
const double &det_db_unclip_ratio, const double &det_db_unclip_ratio,
const bool &use_polygon_score, const bool &visualize, const bool &use_polygon_score, const bool &visualize,
const bool &use_tensorrt, const bool &use_fp16) { const bool &use_tensorrt, const std::string &precision) {
this->use_gpu_ = use_gpu; this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id; this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem; this->gpu_mem_ = gpu_mem;
...@@ -62,7 +62,7 @@ public: ...@@ -62,7 +62,7 @@ public:
this->visualize_ = visualize; this->visualize_ = visualize;
this->use_tensorrt_ = use_tensorrt; this->use_tensorrt_ = use_tensorrt;
this->use_fp16_ = use_fp16; this->precision_ = precision;
LoadModel(model_dir); LoadModel(model_dir);
} }
...@@ -71,7 +71,7 @@ public: ...@@ -71,7 +71,7 @@ public:
void LoadModel(const std::string &model_dir); void LoadModel(const std::string &model_dir);
// Run predictor // Run predictor
void Run(cv::Mat &img, std::vector<std::vector<std::vector<int>>> &boxes); void Run(cv::Mat &img, std::vector<std::vector<std::vector<int>>> &boxes, std::vector<double> *times);
private: private:
std::shared_ptr<Predictor> predictor_; std::shared_ptr<Predictor> predictor_;
...@@ -91,7 +91,7 @@ private: ...@@ -91,7 +91,7 @@ private:
bool visualize_ = true; bool visualize_ = true;
bool use_tensorrt_ = false; bool use_tensorrt_ = false;
bool use_fp16_ = false; std::string precision_ = "fp32";
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f}; std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f}; std::vector<float> scale_ = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
......
...@@ -44,14 +44,14 @@ public: ...@@ -44,14 +44,14 @@ public:
const int &gpu_id, const int &gpu_mem, const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads, const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const string &label_path, const bool &use_mkldnn, const string &label_path,
const bool &use_tensorrt, const bool &use_fp16) { const bool &use_tensorrt, const std::string &precision) {
this->use_gpu_ = use_gpu; this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id; this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem; this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads; this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn; this->use_mkldnn_ = use_mkldnn;
this->use_tensorrt_ = use_tensorrt; this->use_tensorrt_ = use_tensorrt;
this->use_fp16_ = use_fp16; this->precision_ = precision;
this->label_list_ = Utility::ReadDict(label_path); this->label_list_ = Utility::ReadDict(label_path);
this->label_list_.insert(this->label_list_.begin(), this->label_list_.insert(this->label_list_.begin(),
...@@ -64,7 +64,7 @@ public: ...@@ -64,7 +64,7 @@ public:
// Load Paddle inference model // Load Paddle inference model
void LoadModel(const std::string &model_dir); void LoadModel(const std::string &model_dir);
void Run(cv::Mat &img); void Run(cv::Mat &img, std::vector<double> *times);
private: private:
std::shared_ptr<Predictor> predictor_; std::shared_ptr<Predictor> predictor_;
...@@ -81,7 +81,7 @@ private: ...@@ -81,7 +81,7 @@ private:
std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f}; std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
bool is_scale_ = true; bool is_scale_ = true;
bool use_tensorrt_ = false; bool use_tensorrt_ = false;
bool use_fp16_ = false; std::string precision_ = "fp32";
// pre-process // pre-process
CrnnResizeImg resize_op_; CrnnResizeImg resize_op_;
Normalize normalize_op_; Normalize normalize_op_;
...@@ -90,9 +90,6 @@ private: ...@@ -90,9 +90,6 @@ private:
// post-process // post-process
PostProcessor post_processor_; PostProcessor post_processor_;
cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box);
}; // class CrnnRecognizer }; // class CrnnRecognizer
} // namespace PaddleOCR } // namespace PaddleOCR
...@@ -47,6 +47,9 @@ public: ...@@ -47,6 +47,9 @@ public:
static void GetAllFiles(const char *dir_name, static void GetAllFiles(const char *dir_name,
std::vector<std::string> &all_inputs); std::vector<std::string> &all_inputs);
static cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box);
}; };
} // namespace PaddleOCR } // namespace PaddleOCR
\ No newline at end of file
...@@ -31,6 +31,7 @@ ...@@ -31,6 +31,7 @@
#include <include/ocr_det.h> #include <include/ocr_det.h>
#include <include/ocr_cls.h> #include <include/ocr_cls.h>
#include <include/ocr_rec.h> #include <include/ocr_rec.h>
#include <include/utility.h>
#include <sys/stat.h> #include <sys/stat.h>
#include <gflags/gflags.h> #include <gflags/gflags.h>
...@@ -41,7 +42,9 @@ DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU."); ...@@ -41,7 +42,9 @@ DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU."); DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU."); DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt."); DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt."); DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
// detection related // detection related
DEFINE_string(image_dir, "", "Dir of input image."); DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model."); DEFINE_string(det_model_dir, "", "Path of det inference model.");
...@@ -65,6 +68,34 @@ using namespace cv; ...@@ -65,6 +68,34 @@ using namespace cv;
using namespace PaddleOCR; using namespace PaddleOCR;
void PrintBenchmarkLog(std::string model_name,
int batch_size,
std::string input_shape,
std::vector<double> time_info,
int img_num){
LOG(INFO) << "----------------------- Config info -----------------------";
LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
LOG(INFO) << "ir_optim: " << "True";
LOG(INFO) << "enable_memory_optim: " << "True";
LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_math_library_num_threads;
LOG(INFO) << "----------------------- Data info -----------------------";
LOG(INFO) << "batch_size: " << batch_size;
LOG(INFO) << "input_shape: " << input_shape;
LOG(INFO) << "data_num: " << img_num;
LOG(INFO) << "----------------------- Model info -----------------------";
LOG(INFO) << "model_name: " << model_name;
LOG(INFO) << "precision: " << FLAGS_precision;
LOG(INFO) << "----------------------- Perf info ------------------------";
LOG(INFO) << "Total time spent(ms): "
<< std::accumulate(time_info.begin(), time_info.end(), 0);
LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
<< ", inference_time(ms): " << time_info[1] / img_num
<< ", postprocess_time(ms): " << time_info[2] / img_num;
}
static bool PathExists(const std::string& path){ static bool PathExists(const std::string& path){
#ifdef _WIN32 #ifdef _WIN32
struct _stat buffer; struct _stat buffer;
...@@ -76,88 +107,15 @@ static bool PathExists(const std::string& path){ ...@@ -76,88 +107,15 @@ static bool PathExists(const std::string& path){
} }
cv::Mat GetRotateCropImage(const cv::Mat &srcimage, int main_det(std::vector<cv::String> cv_all_img_names) {
std::vector<std::vector<int>> box) { std::vector<double> time_info = {0, 0, 0};
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
int main_det(int argc, char **argv) {
// Parsing command-line
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
if (!PathExists(FLAGS_image_dir)) {
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
exit(1);
}
std::vector<cv::String> cv_all_img_names;
cv::glob(FLAGS_image_dir, cv_all_img_names);
std::cout << "total images num: " << cv_all_img_names.size() << endl;
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh, FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio, FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize, FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_use_fp16); FLAGS_use_tensorrt, FLAGS_precision);
auto start = std::chrono::system_clock::now();
for (int i = 0; i < cv_all_img_names.size(); ++i) { for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i]; LOG(INFO) << "The predict img: " << cv_all_img_names[i];
...@@ -167,46 +125,28 @@ int main_det(int argc, char **argv) { ...@@ -167,46 +125,28 @@ int main_det(int argc, char **argv) {
exit(1); exit(1);
} }
std::vector<std::vector<std::vector<int>>> boxes; std::vector<std::vector<std::vector<int>>> boxes;
std::vector<double> det_times;
det.Run(srcimg, boxes); det.Run(srcimg, boxes, &det_times);
auto end = std::chrono::system_clock::now(); time_info[0] += det_times[0];
auto duration = time_info[1] += det_times[1];
std::chrono::duration_cast<std::chrono::microseconds>(end - start); time_info[2] += det_times[2];
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den
<< "s" << std::endl;
} }
if (FLAGS_benchmark) {
PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
}
return 0; return 0;
} }
int main_rec(int argc, char **argv) { int main_rec(std::vector<cv::String> cv_all_img_names) {
// Parsing command-line std::vector<double> time_info = {0, 0, 0};
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
if (!PathExists(FLAGS_image_dir)) {
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
exit(1);
}
std::vector<cv::String> cv_all_img_names;
cv::glob(FLAGS_image_dir, cv_all_img_names);
std::cout << "total images num: " << cv_all_img_names.size() << endl;
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_char_list_file, FLAGS_use_mkldnn, FLAGS_char_list_file,
FLAGS_use_tensorrt, FLAGS_use_fp16); FLAGS_use_tensorrt, FLAGS_precision);
auto start = std::chrono::system_clock::now();
for (int i = 0; i < cv_all_img_names.size(); ++i) { for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i]; LOG(INFO) << "The predict img: " << cv_all_img_names[i];
...@@ -217,65 +157,42 @@ int main_rec(int argc, char **argv) { ...@@ -217,65 +157,42 @@ int main_rec(int argc, char **argv) {
exit(1); exit(1);
} }
rec.Run(srcimg); std::vector<double> rec_times;
rec.Run(srcimg, &rec_times);
auto end = std::chrono::system_clock::now(); time_info[0] += rec_times[0];
auto duration = time_info[1] += rec_times[1];
std::chrono::duration_cast<std::chrono::microseconds>(end - start); time_info[2] += rec_times[2];
std::cout << "Cost " }
<< double(duration.count()) *
std::chrono::microseconds::period::num / if (FLAGS_benchmark) {
std::chrono::microseconds::period::den PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
<< "s" << std::endl;
} }
return 0; return 0;
} }
int main_system(int argc, char **argv) { int main_system(std::vector<cv::String> cv_all_img_names) {
// Parsing command-line
google::ParseCommandLineFlags(&argc, &argv, true);
if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
(FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--use_angle_cls=true "
<< "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
if (!PathExists(FLAGS_image_dir)) {
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
exit(1);
}
std::vector<cv::String> cv_all_img_names;
cv::glob(FLAGS_image_dir, cv_all_img_names);
std::cout << "total images num: " << cv_all_img_names.size() << endl;
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh, FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio, FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize, FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_use_fp16); FLAGS_use_tensorrt, FLAGS_precision);
Classifier *cls = nullptr; Classifier *cls = nullptr;
if (FLAGS_use_angle_cls) { if (FLAGS_use_angle_cls) {
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_cls_thresh, FLAGS_use_mkldnn, FLAGS_cls_thresh,
FLAGS_use_tensorrt, FLAGS_use_fp16); FLAGS_use_tensorrt, FLAGS_precision);
} }
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_char_list_file, FLAGS_use_mkldnn, FLAGS_char_list_file,
FLAGS_use_tensorrt, FLAGS_use_fp16); FLAGS_use_tensorrt, FLAGS_precision);
auto start = std::chrono::system_clock::now(); auto start = std::chrono::system_clock::now();
...@@ -288,17 +205,19 @@ int main_system(int argc, char **argv) { ...@@ -288,17 +205,19 @@ int main_system(int argc, char **argv) {
exit(1); exit(1);
} }
std::vector<std::vector<std::vector<int>>> boxes; std::vector<std::vector<std::vector<int>>> boxes;
std::vector<double> det_times;
det.Run(srcimg, boxes); std::vector<double> rec_times;
det.Run(srcimg, boxes, &det_times);
cv::Mat crop_img; cv::Mat crop_img;
for (int j = 0; j < boxes.size(); j++) { for (int j = 0; j < boxes.size(); j++) {
crop_img = GetRotateCropImage(srcimg, boxes[j]); crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
if (cls != nullptr) { if (cls != nullptr) {
crop_img = cls->Run(crop_img); crop_img = cls->Run(crop_img);
} }
rec.Run(crop_img); rec.Run(crop_img, &rec_times);
} }
auto end = std::chrono::system_clock::now(); auto end = std::chrono::system_clock::now();
...@@ -315,22 +234,70 @@ int main_system(int argc, char **argv) { ...@@ -315,22 +234,70 @@ int main_system(int argc, char **argv) {
} }
void check_params(char* mode) {
if (strcmp(mode, "det")==0) {
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (strcmp(mode, "rec")==0) {
if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (strcmp(mode, "system")==0) {
if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
(FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--use_angle_cls=true "
<< "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
exit(1);
}
}
int main(int argc, char **argv) { int main(int argc, char **argv) {
if (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0) { if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
std::cout << "Please choose one mode of [det, rec, system] !" << std::endl; std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
return -1; return -1;
} }
std::cout << "mode: " << argv[1] << endl; std::cout << "mode: " << argv[1] << endl;
if (strcmp(argv[1], "det")==0) { // Parsing command-line
return main_det(argc, argv); google::ParseCommandLineFlags(&argc, &argv, true);
} check_params(argv[1]);
if (strcmp(argv[1], "rec")==0) {
return main_rec(argc, argv); if (!PathExists(FLAGS_image_dir)) {
} std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
if (strcmp(argv[1], "system")==0) { exit(1);
return main_system(argc, argv); }
}
// return 0; std::vector<cv::String> cv_all_img_names;
cv::glob(FLAGS_image_dir, cv_all_img_names);
std::cout << "total images num: " << cv_all_img_names.size() << endl;
if (strcmp(argv[1], "det")==0) {
return main_det(cv_all_img_names);
}
if (strcmp(argv[1], "rec")==0) {
return main_rec(cv_all_img_names);
}
if (strcmp(argv[1], "system")==0) {
return main_system(cv_all_img_names);
}
} }
...@@ -77,10 +77,16 @@ void Classifier::LoadModel(const std::string &model_dir) { ...@@ -77,10 +77,16 @@ void Classifier::LoadModel(const std::string &model_dir) {
if (this->use_gpu_) { if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) { if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine( config.EnableTensorRtEngine(
1 << 20, 10, 3, 1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf precision,
: paddle_infer::Config::Precision::kFloat32,
false, false); false, false);
} }
} else { } else {
......
...@@ -26,10 +26,16 @@ void DBDetector::LoadModel(const std::string &model_dir) { ...@@ -26,10 +26,16 @@ void DBDetector::LoadModel(const std::string &model_dir) {
if (this->use_gpu_) { if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) { if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine( config.EnableTensorRtEngine(
1 << 20, 10, 3, 1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf precision,
: paddle_infer::Config::Precision::kFloat32,
false, false); false, false);
std::map<std::string, std::vector<int>> min_input_shape = { std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 50, 50}}, {"x", {1, 3, 50, 50}},
...@@ -91,13 +97,16 @@ void DBDetector::LoadModel(const std::string &model_dir) { ...@@ -91,13 +97,16 @@ void DBDetector::LoadModel(const std::string &model_dir) {
} }
void DBDetector::Run(cv::Mat &img, void DBDetector::Run(cv::Mat &img,
std::vector<std::vector<std::vector<int>>> &boxes) { std::vector<std::vector<std::vector<int>>> &boxes,
std::vector<double> *times) {
float ratio_h{}; float ratio_h{};
float ratio_w{}; float ratio_w{};
cv::Mat srcimg; cv::Mat srcimg;
cv::Mat resize_img; cv::Mat resize_img;
img.copyTo(srcimg); img.copyTo(srcimg);
auto preprocess_start = std::chrono::steady_clock::now();
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w, this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
this->use_tensorrt_); this->use_tensorrt_);
...@@ -106,14 +115,17 @@ void DBDetector::Run(cv::Mat &img, ...@@ -106,14 +115,17 @@ void DBDetector::Run(cv::Mat &img,
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data()); this->permute_op_.Run(&resize_img, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
// Inference. // Inference.
auto input_names = this->predictor_->GetInputNames(); auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]); auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data()); input_t->CopyFromCpu(input.data());
this->predictor_->Run(); this->predictor_->Run();
std::vector<float> out_data; std::vector<float> out_data;
auto output_names = this->predictor_->GetOutputNames(); auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]); auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
...@@ -123,7 +135,9 @@ void DBDetector::Run(cv::Mat &img, ...@@ -123,7 +135,9 @@ void DBDetector::Run(cv::Mat &img,
out_data.resize(out_num); out_data.resize(out_num);
output_t->CopyToCpu(out_data.data()); output_t->CopyToCpu(out_data.data());
auto inference_end = std::chrono::steady_clock::now();
auto postprocess_start = std::chrono::steady_clock::now();
int n2 = output_shape[2]; int n2 = output_shape[2];
int n3 = output_shape[3]; int n3 = output_shape[3];
int n = n2 * n3; int n = n2 * n3;
...@@ -151,7 +165,15 @@ void DBDetector::Run(cv::Mat &img, ...@@ -151,7 +165,15 @@ void DBDetector::Run(cv::Mat &img,
this->det_db_unclip_ratio_, this->use_polygon_score_); this->det_db_unclip_ratio_, this->use_polygon_score_);
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg); boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
auto postprocess_end = std::chrono::steady_clock::now();
std::cout << "Detected boxes num: " << boxes.size() << endl; std::cout << "Detected boxes num: " << boxes.size() << endl;
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() * 1000));
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
//// visualization //// visualization
if (this->visualize_) { if (this->visualize_) {
......
...@@ -16,13 +16,13 @@ ...@@ -16,13 +16,13 @@
namespace PaddleOCR { namespace PaddleOCR {
void CRNNRecognizer::Run(cv::Mat &img) { void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
cv::Mat srcimg; cv::Mat srcimg;
img.copyTo(srcimg); img.copyTo(srcimg);
cv::Mat resize_img; cv::Mat resize_img;
float wh_ratio = float(srcimg.cols) / float(srcimg.rows); float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
auto preprocess_start = std::chrono::steady_clock::now();
this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_); this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
...@@ -31,11 +31,13 @@ void CRNNRecognizer::Run(cv::Mat &img) { ...@@ -31,11 +31,13 @@ void CRNNRecognizer::Run(cv::Mat &img) {
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data()); this->permute_op_.Run(&resize_img, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
// Inference. // Inference.
auto input_names = this->predictor_->GetInputNames(); auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]); auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data()); input_t->CopyFromCpu(input.data());
this->predictor_->Run(); this->predictor_->Run();
...@@ -49,8 +51,10 @@ void CRNNRecognizer::Run(cv::Mat &img) { ...@@ -49,8 +51,10 @@ void CRNNRecognizer::Run(cv::Mat &img) {
predict_batch.resize(out_num); predict_batch.resize(out_num);
output_t->CopyToCpu(predict_batch.data()); output_t->CopyToCpu(predict_batch.data());
auto inference_end = std::chrono::steady_clock::now();
// ctc decode // ctc decode
auto postprocess_start = std::chrono::steady_clock::now();
std::vector<std::string> str_res; std::vector<std::string> str_res;
int argmax_idx; int argmax_idx;
int last_index = 0; int last_index = 0;
...@@ -73,11 +77,19 @@ void CRNNRecognizer::Run(cv::Mat &img) { ...@@ -73,11 +77,19 @@ void CRNNRecognizer::Run(cv::Mat &img) {
} }
last_index = argmax_idx; last_index = argmax_idx;
} }
auto postprocess_end = std::chrono::steady_clock::now();
score /= count; score /= count;
for (int i = 0; i < str_res.size(); i++) { for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i]; std::cout << str_res[i];
} }
std::cout << "\tscore: " << score << std::endl; std::cout << "\tscore: " << score << std::endl;
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() * 1000));
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
} }
void CRNNRecognizer::LoadModel(const std::string &model_dir) { void CRNNRecognizer::LoadModel(const std::string &model_dir) {
...@@ -89,10 +101,16 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -89,10 +101,16 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
if (this->use_gpu_) { if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) { if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine( config.EnableTensorRtEngine(
1 << 20, 10, 3, 1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf precision,
: paddle_infer::Config::Precision::kFloat32,
false, false); false, false);
std::map<std::string, std::vector<int>> min_input_shape = { std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 32, 10}}}; {"x", {1, 3, 32, 10}}};
...@@ -126,59 +144,4 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -126,59 +144,4 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
this->predictor_ = CreatePredictor(config); this->predictor_ = CreatePredictor(config);
} }
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
} // namespace PaddleOCR } // namespace PaddleOCR
...@@ -92,4 +92,59 @@ void Utility::GetAllFiles(const char *dir_name, ...@@ -92,4 +92,59 @@ void Utility::GetAllFiles(const char *dir_name,
} }
} }
cv::Mat Utility::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
} // namespace PaddleOCR } // namespace PaddleOCR
\ No newline at end of file
doc/joinus.PNG

541.1 KB | W: | H:

doc/joinus.PNG

190.7 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
...@@ -25,6 +25,6 @@ class ClsLoss(nn.Layer): ...@@ -25,6 +25,6 @@ class ClsLoss(nn.Layer):
self.loss_func = nn.CrossEntropyLoss(reduction='mean') self.loss_func = nn.CrossEntropyLoss(reduction='mean')
def forward(self, predicts, batch): def forward(self, predicts, batch):
label = batch[1] label = batch[1].astype("int64")
loss = self.loss_func(input=predicts, label=label) loss = self.loss_func(input=predicts, label=label)
return {'loss': loss} return {'loss': loss}
...@@ -101,6 +101,7 @@ class TextDetector(object): ...@@ -101,6 +101,7 @@ class TextDetector(object):
if args.benchmark: if args.benchmark:
import auto_log import auto_log
pid = os.getpid() pid = os.getpid()
gpu_id = utility.get_infer_gpuid()
self.autolog = auto_log.AutoLogger( self.autolog = auto_log.AutoLogger(
model_name="det", model_name="det",
model_precision=args.precision, model_precision=args.precision,
...@@ -110,7 +111,7 @@ class TextDetector(object): ...@@ -110,7 +111,7 @@ class TextDetector(object):
inference_config=self.config, inference_config=self.config,
pids=pid, pids=pid,
process_name=None, process_name=None,
gpu_ids=0, gpu_ids=gpu_id if args.use_gpu else None,
time_keys=[ time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time' 'preprocess_time', 'inference_time', 'postprocess_time'
], ],
......
...@@ -68,6 +68,7 @@ class TextRecognizer(object): ...@@ -68,6 +68,7 @@ class TextRecognizer(object):
if args.benchmark: if args.benchmark:
import auto_log import auto_log
pid = os.getpid() pid = os.getpid()
gpu_id = utility.get_infer_gpuid()
self.autolog = auto_log.AutoLogger( self.autolog = auto_log.AutoLogger(
model_name="rec", model_name="rec",
model_precision=args.precision, model_precision=args.precision,
...@@ -77,7 +78,7 @@ class TextRecognizer(object): ...@@ -77,7 +78,7 @@ class TextRecognizer(object):
inference_config=self.config, inference_config=self.config,
pids=pid, pids=pid,
process_name=None, process_name=None,
gpu_ids=0 if args.use_gpu else None, gpu_ids=gpu_id if args.use_gpu else None,
time_keys=[ time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time' 'preprocess_time', 'inference_time', 'postprocess_time'
], ],
......
...@@ -159,6 +159,11 @@ def create_predictor(args, mode, logger): ...@@ -159,6 +159,11 @@ def create_predictor(args, mode, logger):
precision = inference.PrecisionType.Float32 precision = inference.PrecisionType.Float32
if args.use_gpu: if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
raise ValueError(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config.enable_use_gpu(args.gpu_mem, 0) config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt: if args.use_tensorrt:
config.enable_tensorrt_engine( config.enable_tensorrt_engine(
...@@ -280,6 +285,20 @@ def create_predictor(args, mode, logger): ...@@ -280,6 +285,20 @@ def create_predictor(args, mode, logger):
return predictor, input_tensor, output_tensors, config return predictor, input_tensor, output_tensors, config
def get_infer_gpuid():
cmd = "nvidia-smi"
res = os.popen(cmd).readlines()
if len(res) == 0:
return None
cmd = "env | grep CUDA_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0:
return 0
else:
gpu_id = env_cuda[0].strip().split("=")[1]
return int(gpu_id[0])
def draw_e2e_res(dt_boxes, strs, img_path): def draw_e2e_res(dt_boxes, strs, img_path):
src_im = cv2.imread(img_path) src_im = cv2.imread(img_path)
for box, str in zip(dt_boxes, strs): for box, str in zip(dt_boxes, strs):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册