Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
42f0219c
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
42f0219c
编写于
9月 16, 2020
作者:
D
Double_V
提交者:
GitHub
9月 16, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #719 from yukavio/develop
add slim/prune
上级
5b5b72e6
a3dee6a4
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
392 addition
and
4 deletion
+392
-4
deploy/slim/prune/README.md
deploy/slim/prune/README.md
+40
-0
deploy/slim/prune/export_prune_model.py
deploy/slim/prune/export_prune_model.py
+67
-0
deploy/slim/prune/pruning_and_finetune.py
deploy/slim/prune/pruning_and_finetune.py
+145
-0
deploy/slim/prune/sensitivity_anal.py
deploy/slim/prune/sensitivity_anal.py
+115
-0
tools/program.py
tools/program.py
+25
-4
未找到文件。
deploy/slim/prune/README.md
0 → 100644
浏览文件 @
42f0219c
> 运行示例前请先安装develop版本PaddleSlim
# 模型裁剪压缩教程
## 概述
该示例使用PaddleSlim提供的
[
裁剪压缩API
](
https://paddlepaddle.github.io/PaddleSlim/api/prune_api/
)
对OCR模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
-
[
OCR模型的常规训练方法
](
https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/detection.md
)
-
[
PaddleSlim使用文档
](
https://paddlepaddle.github.io/PaddleSlim/
)
## 安装PaddleSlim
可按照
[
PaddleSlim使用文档
](
https://paddlepaddle.github.io/PaddleSlim/
)
中的步骤安装PaddleSlim。
## 敏感度分析训练
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析:
```
bash
python deploy/slim/prune/sensitivity_anal.py
-c
configs/det/det_mv3_db.yml
-o
Global.pretrain_weights
=
./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card
=
1
```
## 裁剪模型与fine-tune
```
bash
python deploy/slim/prune/pruning_and_finetune.py
-c
configs/det/det_mv3_db.yml
-o
Global.pretrain_weights
=
./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card
=
1
```
## 评估并导出
在得到裁剪训练保存的模型后,我们可以将其导出为inference_model,用于预测部署:
```
bash
python deploy/slim/prune/export_prune_model.py
-c
configs/det/det_mv3_db.yml
-o
Global.pretrain_weights
=
./output/det_db/best_accuracy Global.test_batch_size_per_card
=
1 Global.save_inference_dir
=
inference_model
```
deploy/slim/prune/export_prune_model.py
0 → 100644
浏览文件 @
42f0219c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
))
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
,
'tools'
))
import
program
from
paddle
import
fluid
from
ppocr.utils.utility
import
initial_logger
logger
=
initial_logger
()
from
ppocr.utils.save_load
import
init_model
from
paddleslim.prune
import
load_model
def
main
():
startup_prog
,
eval_program
,
place
,
config
,
_
=
program
.
preprocess
()
feeded_var_names
,
target_vars
,
fetches_var_name
=
program
.
build_export
(
config
,
eval_program
,
startup_prog
)
eval_program
=
eval_program
.
clone
(
for_test
=
True
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
config
[
'Global'
][
'checkpoints'
]
is
not
None
:
path
=
config
[
'Global'
][
'checkpoints'
]
else
:
path
=
config
[
'Global'
][
'pretrain_weights'
]
load_model
(
exe
,
eval_program
,
path
)
save_inference_dir
=
config
[
'Global'
][
'save_inference_dir'
]
if
not
os
.
path
.
exists
(
save_inference_dir
):
os
.
makedirs
(
save_inference_dir
)
fluid
.
io
.
save_inference_model
(
dirname
=
save_inference_dir
,
feeded_var_names
=
feeded_var_names
,
main_program
=
eval_program
,
target_vars
=
target_vars
,
executor
=
exe
,
model_filename
=
'model'
,
params_filename
=
'params'
)
print
(
"inference model saved in {}/model and {}/params"
.
format
(
save_inference_dir
,
save_inference_dir
))
print
(
"save success, output_name_list:"
,
fetches_var_name
)
if
__name__
==
'__main__'
:
main
()
deploy/slim/prune/pruning_and_finetune.py
0 → 100644
浏览文件 @
42f0219c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
numpy
as
np
__dir__
=
os
.
path
.
dirname
(
__file__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
))
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
,
'tools'
))
import
tools.program
as
program
from
paddle
import
fluid
from
ppocr.utils.utility
import
initial_logger
logger
=
initial_logger
()
from
ppocr.data.reader_main
import
reader_main
from
ppocr.utils.save_load
import
init_model
from
ppocr.utils.character
import
CharacterOps
from
ppocr.utils.utility
import
initial_logger
from
paddleslim.prune
import
Pruner
,
save_model
from
paddleslim.analysis
import
flops
from
paddleslim.core.graph_wrapper
import
*
from
paddleslim.prune
import
load_sensitivities
,
get_ratios_by_loss
,
merge_sensitive
logger
=
initial_logger
()
skip_list
=
[
'conv10_linear_weights'
,
'conv11_linear_weights'
,
'conv12_expand_weights'
,
'conv12_linear_weights'
,
'conv12_se_2_weights'
,
'conv13_linear_weights'
,
'conv2_linear_weights'
,
'conv4_linear_weights'
,
'conv5_expand_weights'
,
'conv5_linear_weights'
,
'conv5_se_2_weights'
,
'conv6_linear_weights'
,
'conv7_linear_weights'
,
'conv8_expand_weights'
,
'conv8_linear_weights'
,
'conv9_expand_weights'
,
'conv9_linear_weights'
]
def
main
():
config
=
program
.
load_config
(
FLAGS
.
config
)
program
.
merge_config
(
FLAGS
.
opt
)
logger
.
info
(
config
)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu
=
config
[
'Global'
][
'use_gpu'
]
program
.
check_gpu
(
use_gpu
)
alg
=
config
[
'Global'
][
'algorithm'
]
assert
alg
in
[
'EAST'
,
'DB'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
]
if
alg
in
[
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
]:
config
[
'Global'
][
'char_ops'
]
=
CharacterOps
(
config
[
'Global'
])
place
=
fluid
.
CUDAPlace
(
0
)
if
use_gpu
else
fluid
.
CPUPlace
()
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
train_build_outputs
=
program
.
build
(
config
,
train_program
,
startup_program
,
mode
=
'train'
)
train_loader
=
train_build_outputs
[
0
]
train_fetch_name_list
=
train_build_outputs
[
1
]
train_fetch_varname_list
=
train_build_outputs
[
2
]
train_opt_loss_name
=
train_build_outputs
[
3
]
eval_program
=
fluid
.
Program
()
eval_build_outputs
=
program
.
build
(
config
,
eval_program
,
startup_program
,
mode
=
'eval'
)
eval_fetch_name_list
=
eval_build_outputs
[
1
]
eval_fetch_varname_list
=
eval_build_outputs
[
2
]
eval_program
=
eval_program
.
clone
(
for_test
=
True
)
train_reader
=
reader_main
(
config
=
config
,
mode
=
"train"
)
train_loader
.
set_sample_list_generator
(
train_reader
,
places
=
place
)
eval_reader
=
reader_main
(
config
=
config
,
mode
=
"eval"
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
# compile program for multi-devices
init_model
(
config
,
train_program
,
exe
)
sen
=
load_sensitivities
(
"sensitivities_0.data"
)
for
i
in
skip_list
:
sen
.
pop
(
i
)
back_bone_list
=
[
'conv'
+
str
(
x
)
for
x
in
range
(
1
,
5
)]
for
i
in
back_bone_list
:
for
key
in
list
(
sen
.
keys
()):
if
i
+
'_'
in
key
:
sen
.
pop
(
key
)
ratios
=
get_ratios_by_loss
(
sen
,
0.03
)
logger
.
info
(
"FLOPs before pruning: {}"
.
format
(
flops
(
eval_program
)))
pruner
=
Pruner
(
criterion
=
'geometry_median'
)
print
(
"ratios: {}"
.
format
(
ratios
))
pruned_val_program
,
_
,
_
=
pruner
.
prune
(
eval_program
,
fluid
.
global_scope
(),
params
=
ratios
.
keys
(),
ratios
=
ratios
.
values
(),
place
=
place
,
only_graph
=
True
)
pruned_program
,
_
,
_
=
pruner
.
prune
(
train_program
,
fluid
.
global_scope
(),
params
=
ratios
.
keys
(),
ratios
=
ratios
.
values
(),
place
=
place
)
logger
.
info
(
"FLOPs after pruning: {}"
.
format
(
flops
(
pruned_val_program
)))
train_compile_program
=
program
.
create_multi_devices_program
(
pruned_program
,
train_opt_loss_name
)
train_info_dict
=
{
'compile_program'
:
train_compile_program
,
\
'train_program'
:
pruned_program
,
\
'reader'
:
train_loader
,
\
'fetch_name_list'
:
train_fetch_name_list
,
\
'fetch_varname_list'
:
train_fetch_varname_list
}
eval_info_dict
=
{
'program'
:
pruned_val_program
,
\
'reader'
:
eval_reader
,
\
'fetch_name_list'
:
eval_fetch_name_list
,
\
'fetch_varname_list'
:
eval_fetch_varname_list
}
if
alg
in
[
'EAST'
,
'DB'
]:
program
.
train_eval_det_run
(
config
,
exe
,
train_info_dict
,
eval_info_dict
,
is_pruning
=
True
)
else
:
program
.
train_eval_rec_run
(
config
,
exe
,
train_info_dict
,
eval_info_dict
)
if
__name__
==
'__main__'
:
parser
=
program
.
ArgsParser
()
FLAGS
=
parser
.
parse_args
()
main
()
deploy/slim/prune/sensitivity_anal.py
0 → 100644
浏览文件 @
42f0219c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
__file__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
))
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
,
'tools'
))
import
json
import
cv2
from
paddle
import
fluid
import
paddleslim
as
slim
from
copy
import
deepcopy
from
tools.eval_utils.eval_det_utils
import
eval_det_run
from
tools
import
program
from
ppocr.utils.utility
import
initial_logger
from
ppocr.data.reader_main
import
reader_main
from
ppocr.utils.save_load
import
init_model
from
ppocr.utils.character
import
CharacterOps
from
ppocr.utils.utility
import
create_module
from
ppocr.data.reader_main
import
reader_main
logger
=
initial_logger
()
def
get_pruned_params
(
program
):
params
=
[]
for
param
in
program
.
global_block
().
all_parameters
():
if
len
(
param
.
shape
)
==
4
and
'depthwise'
not
in
param
.
name
and
'transpose'
not
in
param
.
name
:
params
.
append
(
param
.
name
)
return
params
def
eval_function
(
eval_args
,
mode
=
'eval'
):
exe
=
eval_args
[
'exe'
]
config
=
eval_args
[
'config'
]
eval_info_dict
=
eval_args
[
'eval_info_dict'
]
metrics
=
eval_det_run
(
exe
,
config
,
eval_info_dict
,
mode
=
mode
)
return
metrics
[
'hmean'
]
def
main
():
config
=
program
.
load_config
(
FLAGS
.
config
)
program
.
merge_config
(
FLAGS
.
opt
)
logger
.
info
(
config
)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu
=
config
[
'Global'
][
'use_gpu'
]
program
.
check_gpu
(
use_gpu
)
alg
=
config
[
'Global'
][
'algorithm'
]
assert
alg
in
[
'EAST'
,
'DB'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
]
if
alg
in
[
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
]:
config
[
'Global'
][
'char_ops'
]
=
CharacterOps
(
config
[
'Global'
])
place
=
fluid
.
CUDAPlace
(
0
)
if
use_gpu
else
fluid
.
CPUPlace
()
startup_prog
=
fluid
.
Program
()
eval_program
=
fluid
.
Program
()
eval_build_outputs
=
program
.
build
(
config
,
eval_program
,
startup_prog
,
mode
=
'test'
)
eval_fetch_name_list
=
eval_build_outputs
[
1
]
eval_fetch_varname_list
=
eval_build_outputs
[
2
]
eval_program
=
eval_program
.
clone
(
for_test
=
True
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
init_model
(
config
,
eval_program
,
exe
)
eval_reader
=
reader_main
(
config
=
config
,
mode
=
"eval"
)
eval_info_dict
=
{
'program'
:
eval_program
,
\
'reader'
:
eval_reader
,
\
'fetch_name_list'
:
eval_fetch_name_list
,
\
'fetch_varname_list'
:
eval_fetch_varname_list
}
eval_args
=
dict
()
eval_args
=
{
'exe'
:
exe
,
'config'
:
config
,
'eval_info_dict'
:
eval_info_dict
}
metrics
=
eval_function
(
eval_args
)
print
(
"Baseline: {}"
.
format
(
metrics
))
params
=
get_pruned_params
(
eval_program
)
print
(
'Start to analyze'
)
sens_0
=
slim
.
prune
.
sensitivity
(
eval_program
,
place
,
params
,
eval_function
,
sensitivities_file
=
"sensitivities_0.data"
,
pruned_ratios
=
[
0.1
,
0.2
,
0.3
,
0.4
,
0.5
,
0.6
,
0.7
,
0.8
],
eval_args
=
eval_args
,
criterion
=
'geometry_median'
)
if
__name__
==
'__main__'
:
parser
=
program
.
ArgsParser
()
FLAGS
=
parser
.
parse_args
()
main
()
tools/program.py
浏览文件 @
42f0219c
...
...
@@ -241,7 +241,11 @@ def create_multi_devices_program(program, loss_var_name, for_quant=False):
return
compile_program
def
train_eval_det_run
(
config
,
exe
,
train_info_dict
,
eval_info_dict
):
def
train_eval_det_run
(
config
,
exe
,
train_info_dict
,
eval_info_dict
,
is_pruning
=
False
):
train_batch_id
=
0
log_smooth_window
=
config
[
'Global'
][
'log_smooth_window'
]
epoch_num
=
config
[
'Global'
][
'epoch_num'
]
...
...
@@ -297,7 +301,14 @@ def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
best_batch_id
=
train_batch_id
best_epoch
=
epoch
save_path
=
save_model_dir
+
"/best_accuracy"
save_model
(
train_info_dict
[
'train_program'
],
save_path
)
if
is_pruning
:
import
paddleslim
as
slim
slim
.
prune
.
save_model
(
exe
,
train_info_dict
[
'train_program'
],
save_path
)
else
:
save_model
(
train_info_dict
[
'train_program'
],
save_path
)
strs
=
'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'
.
format
(
train_batch_id
,
metrics
,
best_eval_hmean
,
best_epoch
,
best_batch_id
)
...
...
@@ -308,10 +319,20 @@ def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
train_loader
.
reset
()
if
epoch
==
0
and
save_epoch_step
==
1
:
save_path
=
save_model_dir
+
"/iter_epoch_0"
save_model
(
train_info_dict
[
'train_program'
],
save_path
)
if
is_pruning
:
import
paddleslim
as
slim
slim
.
prune
.
save_model
(
exe
,
train_info_dict
[
'train_program'
],
save_path
)
else
:
save_model
(
train_info_dict
[
'train_program'
],
save_path
)
if
epoch
>
0
and
epoch
%
save_epoch_step
==
0
:
save_path
=
save_model_dir
+
"/iter_epoch_%d"
%
(
epoch
)
save_model
(
train_info_dict
[
'train_program'
],
save_path
)
if
is_pruning
:
import
paddleslim
as
slim
slim
.
prune
.
save_model
(
exe
,
train_info_dict
[
'train_program'
],
save_path
)
else
:
save_model
(
train_info_dict
[
'train_program'
],
save_path
)
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录