Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
3e1a5226
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3e1a5226
编写于
11月 29, 2021
作者:
M
MissPenguin
提交者:
GitHub
11月 29, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4761 from WenmuZhou/tipc
add PSE and rec PACT to tipc
上级
b23712ee
7c15d1b7
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
676 addition
and
8 deletion
+676
-8
doc/doc_ch/detection.md
doc/doc_ch/detection.md
+4
-0
ppocr/postprocess/east_postprocess.py
ppocr/postprocess/east_postprocess.py
+10
-3
ppocr/utils/save_load.py
ppocr/utils/save_load.py
+8
-2
requirements.txt
requirements.txt
+1
-2
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
...el_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+21
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
..._ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
+101
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
...pocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
+101
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
...figs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
+51
-0
test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
+135
-0
test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
..._tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
+1
-1
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
+134
-0
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
+51
-0
test_tipc/prepare.sh
test_tipc/prepare.sh
+7
-0
未找到文件。
doc/doc_ch/detection.md
浏览文件 @
3e1a5226
...
...
@@ -247,3 +247,7 @@ Q1: 训练模型转inference 模型之后预测效果不一致?
**A**:此类问题出现较多,问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。以det_mv3_db.yml配置文件训练的模型为例,训练模型、inference模型预测结果不一致问题解决方式如下:
- 检查[trained model预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116),和[inference model的预测预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42)函数是否一致。算法在评估的时候,输入图像大小会影响精度,为了和论文保持一致,训练icdar15配置文件中将图像resize到[736, 1280],但是在inference model预测的时候只有一套默认参数,会考虑到预测速度问题,默认限制图像最长边为960做resize的。训练模型预处理和inference模型的预处理函数位于[ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- 检查[trained model后处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51),和[inference 后处理参数](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50)是否一致。
Q1: 训练EAST模型提示找不到lanms库?
**A**:执行pip3 install lanms-nova 即可。
ppocr/postprocess/east_postprocess.py
浏览文件 @
3e1a5226
...
...
@@ -20,7 +20,6 @@ import numpy as np
from
.locality_aware_nms
import
nms_locality
import
cv2
import
paddle
import
lanms
import
os
import
sys
...
...
@@ -61,6 +60,7 @@ class EASTPostProcess(object):
"""
restore text boxes from score map and geo map
"""
score_map
=
score_map
[
0
]
geo_map
=
np
.
swapaxes
(
geo_map
,
1
,
0
)
geo_map
=
np
.
swapaxes
(
geo_map
,
1
,
2
)
...
...
@@ -76,8 +76,15 @@ class EASTPostProcess(object):
boxes
=
np
.
zeros
((
text_box_restored
.
shape
[
0
],
9
),
dtype
=
np
.
float32
)
boxes
[:,
:
8
]
=
text_box_restored
.
reshape
((
-
1
,
8
))
boxes
[:,
8
]
=
score_map
[
xy_text
[:,
0
],
xy_text
[:,
1
]]
boxes
=
lanms
.
merge_quadrangle_n9
(
boxes
,
nms_thresh
)
# boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
try
:
import
lanms
boxes
=
lanms
.
merge_quadrangle_n9
(
boxes
,
nms_thresh
)
except
:
print
(
'you should install lanms by pip3 install lanms-nova to speed up nms_locality'
)
boxes
=
nms_locality
(
boxes
.
astype
(
np
.
float64
),
nms_thresh
)
if
boxes
.
shape
[
0
]
==
0
:
return
[]
# Here we filter some low score boxes by the average score map,
...
...
ppocr/utils/save_load.py
浏览文件 @
3e1a5226
...
...
@@ -67,6 +67,7 @@ def load_model(config, model, optimizer=None):
if
key
not
in
params
:
logger
.
warning
(
"{} not in loaded params {} !"
.
format
(
key
,
params
.
keys
()))
continue
pre_value
=
params
[
key
]
if
list
(
value
.
shape
)
==
list
(
pre_value
.
shape
):
new_state_dict
[
key
]
=
pre_value
...
...
@@ -76,9 +77,14 @@ def load_model(config, model, optimizer=None):
format
(
key
,
value
.
shape
,
pre_value
.
shape
))
model
.
set_state_dict
(
new_state_dict
)
optim_dict
=
paddle
.
load
(
checkpoints
+
'.pdopt'
)
if
optimizer
is
not
None
:
optimizer
.
set_state_dict
(
optim_dict
)
if
os
.
path
.
exists
(
checkpoints
+
'.pdopt'
):
optim_dict
=
paddle
.
load
(
checkpoints
+
'.pdopt'
)
optimizer
.
set_state_dict
(
optim_dict
)
else
:
logger
.
warning
(
"{}.pdopt is not exists, params of optimizer is not loaded"
.
format
(
checkpoints
))
if
os
.
path
.
exists
(
checkpoints
+
'.states'
):
with
open
(
checkpoints
+
'.states'
,
'rb'
)
as
f
:
...
...
requirements.txt
浏览文件 @
3e1a5226
...
...
@@ -12,5 +12,4 @@ cython
lxml
premailer
openpyxl
fasttext
==0.9.1
lanms-nova
\ No newline at end of file
fasttext
==0.9.1
\ No newline at end of file
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
0 → 100644
浏览文件 @
3e1a5226
===========================kl_quant_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_KL
python:python3.7
Global.pretrained_model:null
Global.save_inference_dir:null
infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/
infer_export:deploy/slim/quantization/quant_kl.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_rec.py
--use_gpu:False|True
--enable_mkldnn:True
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/rec_inference
null:null
--benchmark:True
null:null
null:null
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
0 → 100644
浏览文件 @
3e1a5226
Global
:
use_gpu
:
true
epoch_num
:
500
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_chinese_lite_v2.0
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
ppocr/utils/ppocr_keys_v1.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Cosine
learning_rate
:
0.001
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
small
small_stride
:
[
1
,
2
,
2
,
2
]
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
48
Head
:
name
:
CTCHead
fc_decay
:
0.00001
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
RecAug
:
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
0 → 100644
浏览文件 @
3e1a5226
Global
:
use_gpu
:
true
epoch_num
:
500
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_chinese_lite_v2.0
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
ppocr/utils/ppocr_keys_v1.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Cosine
learning_rate
:
0.001
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
small
small_stride
:
[
1
,
2
,
2
,
2
]
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
48
Head
:
name
:
CTCHead
fc_decay
:
0.00001
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
RecAug
:
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
0 → 100644
浏览文件 @
3e1a5226
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_PACT
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.checkpoints:null
train_model_name:latest
train_infer_img_dir:./train_data/ic15_data/test/word_1.png
null:null
##
trainer:pact_train
norm_train:null
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.checkpoints:
norm_export:null
quant_export:deploy/slim/quantization/export_model.py -ctest_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
fpgm_export:null
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:null
infer_export:null
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
\ No newline at end of file
test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
0 → 100644
浏览文件 @
3e1a5226
Global
:
use_gpu
:
true
epoch_num
:
600
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/det_mv3_pse/
save_epoch_step
:
600
# evaluation is run every 63 iterations
eval_batch_step
:
[
0
,
1000
]
cal_metric_during_train
:
False
pretrained_model
:
./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints
:
#./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_en/img_10.jpg
save_res_path
:
./output/det_pse/predicts_pse.txt
Architecture
:
model_type
:
det
algorithm
:
PSE
Transform
:
null
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
FPN
out_channels
:
96
Head
:
name
:
PSEHead
hidden_dim
:
96
out_channels
:
7
Loss
:
name
:
PSELoss
alpha
:
0.7
ohem_ratio
:
3
kernel_sample_mask
:
pred
reduction
:
none
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Step
learning_rate
:
0.001
step_size
:
200
gamma
:
0.1
regularizer
:
name
:
'
L2'
factor
:
0.0005
PostProcess
:
name
:
PSEPostProcess
thresh
:
0
box_thresh
:
0.85
min_area
:
16
box_type
:
box
# 'box' or 'poly'
scale
:
1
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
ColorJitter
:
brightness
:
0.12549019607843137
saturation
:
0.5
-
IaaAugment
:
augmenter_args
:
-
{
'
type'
:
Resize
,
'
args'
:
{
'
size'
:
[
0.5
,
3
]
}
}
-
{
'
type'
:
Fliplr
,
'
args'
:
{
'
p'
:
0.5
}
}
-
{
'
type'
:
Affine
,
'
args'
:
{
'
rotate'
:
[
-10
,
10
]
}
}
-
MakePseGt
:
kernel_num
:
7
min_shrink_ratio
:
0.4
size
:
640
-
RandomCropImgMask
:
size
:
[
640
,
640
]
main_key
:
gt_text
crop_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
# the order of the dataloader list
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
16
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
limit_side_len
:
736
limit_type
:
min
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
8
\ No newline at end of file
test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
3e1a5226
===========================train_params===========================
model_name:det_mv3_pse_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_mv3_pse/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:PSE
test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
浏览文件 @
3e1a5226
...
...
@@ -34,7 +34,7 @@ distill_export:null
export1:null
export2:null
##
train_model:./inference/det_
mv3
_east/best_accuracy
train_model:./inference/det_
r50_vd
_east/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
...
...
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
0 → 100644
浏览文件 @
3e1a5226
Global
:
use_gpu
:
true
epoch_num
:
600
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/det_r50_vd_pse/
save_epoch_step
:
600
# evaluation is run every 125 iterations
eval_batch_step
:
[
0
,
1000
]
cal_metric_during_train
:
False
pretrained_model
:
checkpoints
:
#./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_en/img_10.jpg
save_res_path
:
./output/det_pse/predicts_pse.txt
Architecture
:
model_type
:
det
algorithm
:
PSE
Transform
:
Backbone
:
name
:
ResNet
layers
:
50
Neck
:
name
:
FPN
out_channels
:
256
Head
:
name
:
PSEHead
hidden_dim
:
256
out_channels
:
7
Loss
:
name
:
PSELoss
alpha
:
0.7
ohem_ratio
:
3
kernel_sample_mask
:
pred
reduction
:
none
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Step
learning_rate
:
0.0001
step_size
:
200
gamma
:
0.1
regularizer
:
name
:
'
L2'
factor
:
0.0005
PostProcess
:
name
:
PSEPostProcess
thresh
:
0
box_thresh
:
0.85
min_area
:
16
box_type
:
box
# 'box' or 'poly'
scale
:
1
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
ColorJitter
:
brightness
:
0.12549019607843137
saturation
:
0.5
-
IaaAugment
:
augmenter_args
:
-
{
'
type'
:
Resize
,
'
args'
:
{
'
size'
:
[
0.5
,
3
]
}
}
-
{
'
type'
:
Fliplr
,
'
args'
:
{
'
p'
:
0.5
}
}
-
{
'
type'
:
Affine
,
'
args'
:
{
'
rotate'
:
[
-10
,
10
]
}
}
-
MakePseGt
:
kernel_num
:
7
min_shrink_ratio
:
0.4
size
:
640
-
RandomCropImgMask
:
size
:
[
640
,
640
]
main_key
:
gt_text
crop_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
# the order of the dataloader list
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
8
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
limit_side_len
:
736
limit_type
:
min
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
8
\ No newline at end of file
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
3e1a5226
===========================train_params===========================
model_name:det_r50_vd_pse_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_r50_vd_pse/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:PSE
test_tipc/prepare.sh
浏览文件 @
3e1a5226
...
...
@@ -174,6 +174,13 @@ if [ ${MODE} = "klquant_whole_infer" ]; then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
fi
if
[
${
model_name
}
=
"ch_ppocr_mobile_v2.0_rec_KL"
]
;
then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
--no-check-certificate
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
--no-check-certificate
cd
./train_data/
&&
tar
xf ic15_data.tar
&&
cd
../
cd
./inference
&&
tar
xf ch_ppocr_mobile_v2.0_rec_infer.tar
&&
tar
xf rec_inference.tar
&&
cd
../
fi
fi
if
[
${
MODE
}
=
"cpp_infer"
]
;
then
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录