Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
2f5420f0
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2f5420f0
编写于
11月 18, 2021
作者:
M
MissPenguin
提交者:
GitHub
11月 18, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'dygraph' into dygraph
上级
eb8bc011
1bbf6e6a
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
416 addition
and
80 deletion
+416
-80
deploy/lite/ocr_db_crnn.cc
deploy/lite/ocr_db_crnn.cc
+66
-11
test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
...mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
+13
-0
test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
...model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
+13
-0
test_tipc/configs/ppocr_system_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
...mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
+13
-0
test_tipc/configs/ppocr_system_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
...model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
+13
-0
test_tipc/docs/test_lite_arm_cpp.md
test_tipc/docs/test_lite_arm_cpp.md
+91
-0
test_tipc/prepare_lite_cpp.sh
test_tipc/prepare_lite_cpp.sh
+45
-7
test_tipc/readme.md
test_tipc/readme.md
+3
-2
test_tipc/test_lite_arm_cpp.sh
test_tipc/test_lite_arm_cpp.sh
+159
-0
test_tipc/test_lite_arm_cpu_cpp.sh
test_tipc/test_lite_arm_cpu_cpp.sh
+0
-60
未找到文件。
deploy/lite/ocr_db_crnn.cc
浏览文件 @
2f5420f0
...
...
@@ -172,7 +172,10 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
cv
::
Mat
resize_img
;
int
index
=
0
;
std
::
vector
<
double
>
time_info
=
{
0
,
0
,
0
};
for
(
int
i
=
boxes
.
size
()
-
1
;
i
>=
0
;
i
--
)
{
auto
preprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
crop_img
=
GetRotateCropImage
(
srcimg
,
boxes
[
i
]);
if
(
use_direction_classify
>=
1
)
{
crop_img
=
RunClsModel
(
crop_img
,
predictor_cls
);
...
...
@@ -191,7 +194,9 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
auto
*
data0
=
input_tensor0
->
mutable_data
<
float
>
();
NeonMeanScale
(
dimg
,
data0
,
resize_img
.
rows
*
resize_img
.
cols
,
mean
,
scale
);
auto
preprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
//// Run CRNN predictor
auto
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
predictor_crnn
->
Run
();
// Get output and run postprocess
...
...
@@ -199,8 +204,10 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
std
::
move
(
predictor_crnn
->
GetOutput
(
0
)));
auto
*
predict_batch
=
output_tensor0
->
data
<
float
>
();
auto
predict_shape
=
output_tensor0
->
shape
();
auto
inference_end
=
std
::
chrono
::
steady_clock
::
now
();
// ctc decode
auto
postprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
std
::
string
str_res
;
int
argmax_idx
;
int
last_index
=
0
;
...
...
@@ -224,7 +231,20 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
score
/=
count
;
rec_text
.
push_back
(
str_res
);
rec_text_score
.
push_back
(
score
);
auto
postprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
float
>
preprocess_diff
=
preprocess_end
-
preprocess_start
;
time_info
[
0
]
+=
double
(
preprocess_diff
.
count
()
*
1000
);
std
::
chrono
::
duration
<
float
>
inference_diff
=
inference_end
-
inference_start
;
time_info
[
1
]
+=
double
(
inference_diff
.
count
()
*
1000
);
std
::
chrono
::
duration
<
float
>
postprocess_diff
=
postprocess_end
-
postprocess_start
;
time_info
[
2
]
+=
double
(
postprocess_diff
.
count
()
*
1000
);
}
times
->
push_back
(
time_info
[
0
]);
times
->
push_back
(
time_info
[
1
]);
times
->
push_back
(
time_info
[
2
]);
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
...
...
@@ -312,7 +332,6 @@ std::shared_ptr<PaddlePredictor> loadModel(std::string model_file, int num_threa
config
.
set_model_from_file
(
model_file
);
config
.
set_threads
(
num_threads
);
std
::
shared_ptr
<
PaddlePredictor
>
predictor
=
CreatePaddlePredictor
<
MobileConfig
>
(
config
);
return
predictor
;
...
...
@@ -434,6 +453,9 @@ void system(char **argv){
auto
rec_predictor
=
loadModel
(
rec_model_file
,
std
::
stoi
(
num_threads
));
auto
cls_predictor
=
loadModel
(
cls_model_file
,
std
::
stoi
(
num_threads
));
std
::
vector
<
double
>
det_time_info
=
{
0
,
0
,
0
};
std
::
vector
<
double
>
rec_time_info
=
{
0
,
0
,
0
};
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
std
::
cout
<<
"The predict img: "
<<
cv_all_img_names
[
i
]
<<
std
::
endl
;
cv
::
Mat
srcimg
=
cv
::
imread
(
cv_all_img_names
[
i
],
cv
::
IMREAD_COLOR
);
...
...
@@ -459,8 +481,38 @@ void system(char **argv){
//// print recognized text
for
(
int
i
=
0
;
i
<
rec_text
.
size
();
i
++
)
{
std
::
cout
<<
i
<<
"
\t
"
<<
rec_text
[
i
]
<<
"
\t
"
<<
rec_text_score
[
i
]
<<
std
::
endl
;
<<
std
::
endl
;
}
det_time_info
[
0
]
+=
det_times
[
0
];
det_time_info
[
1
]
+=
det_times
[
1
];
det_time_info
[
2
]
+=
det_times
[
2
];
rec_time_info
[
0
]
+=
rec_times
[
0
];
rec_time_info
[
1
]
+=
rec_times
[
1
];
rec_time_info
[
2
]
+=
rec_times
[
2
];
}
if
(
strcmp
(
argv
[
12
],
"True"
)
==
0
)
{
AutoLogger
autolog_det
(
det_model_file
,
runtime_device
,
std
::
stoi
(
num_threads
),
std
::
stoi
(
batchsize
),
"dynamic"
,
precision
,
det_time_info
,
cv_all_img_names
.
size
());
AutoLogger
autolog_rec
(
rec_model_file
,
runtime_device
,
std
::
stoi
(
num_threads
),
std
::
stoi
(
batchsize
),
"dynamic"
,
precision
,
rec_time_info
,
cv_all_img_names
.
size
());
autolog_det
.
report
();
std
::
cout
<<
std
::
endl
;
autolog_rec
.
report
();
}
}
...
...
@@ -503,15 +555,15 @@ void det(int argc, char **argv) {
auto
img_vis
=
Visualization
(
srcimg
,
boxes
);
std
::
cout
<<
boxes
.
size
()
<<
" bboxes have detected:"
<<
std
::
endl
;
//
for (int i=0; i<boxes.size(); i++){
//
std::cout << "The " << i << " box:" << std::endl;
//
for (int j=0; j<4; j++){
//
for (int k=0; k<2; k++){
//
std::cout << boxes[i][j][k] << "\t";
//
}
//
}
//
std::cout << std::endl;
//
}
for
(
int
i
=
0
;
i
<
boxes
.
size
();
i
++
){
std
::
cout
<<
"The "
<<
i
<<
" box:"
<<
std
::
endl
;
for
(
int
j
=
0
;
j
<
4
;
j
++
){
for
(
int
k
=
0
;
k
<
2
;
k
++
){
std
::
cout
<<
boxes
[
i
][
j
][
k
]
<<
"
\t
"
;
}
}
std
::
cout
<<
std
::
endl
;
}
time_info
[
0
]
+=
times
[
0
];
time_info
[
1
]
+=
times
[
1
];
time_info
[
2
]
+=
times
[
2
];
...
...
@@ -585,6 +637,9 @@ void rec(int argc, char **argv) {
std
::
cout
<<
i
<<
"
\t
"
<<
rec_text
[
i
]
<<
"
\t
"
<<
rec_text_score
[
i
]
<<
std
::
endl
;
}
time_info
[
0
]
+=
times
[
0
];
time_info
[
1
]
+=
times
[
1
];
time_info
[
2
]
+=
times
[
2
];
}
// TODO: support autolog
if
(
strcmp
(
argv
[
9
],
"True"
)
==
0
)
{
...
...
test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
浏览文件 @
2f5420f0
===========================lite_params===========================
inference:./ocr_db_crnn det
runtime_device:ARM_CPU
det_infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
null:null
null:null
--cpu_threads:1|4
--det_batch_size:1
null:null
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
null:null
--benchmark:True
\ No newline at end of file
test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
0 → 100644
浏览文件 @
2f5420f0
===========================lite_params===========================
inference:./ocr_db_crnn det
runtime_device:ARM_GPU_OPENCL
det_infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
null:null
null:null
--cpu_threads:1|4
--det_batch_size:1
null:null
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
null:null
--benchmark:True
test_tipc/configs/ppocr_system_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
0 → 100644
浏览文件 @
2f5420f0
===========================lite_params===========================
inference:./ocr_db_crnn system
runtime_device:ARM_CPU
det_infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
rec_infer_model:ch_PP-OCRv2_rec_infer|ch_PP-OCRv2_rec_slim_quant_infer
cls_infer_model:ch_ppocr_mobile_v2.0_cls_infer|ch_ppocr_mobile_v2.0_cls_slim_infer
--cpu_threads:1|4
--det_batch_size:1
--rec_batch_size:1
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
test_tipc/configs/ppocr_system_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
0 → 100644
浏览文件 @
2f5420f0
===========================lite_params===========================
inference:./ocr_db_crnn system
runtime_device:ARM_GPU_OPENCL
det_infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
rec_infer_model:ch_PP-OCRv2_rec_infer|ch_PP-OCRv2_rec_slim_quant_infer
cls_infer_model:ch_ppocr_mobile_v2.0_cls_infer|ch_ppocr_mobile_v2.0_cls_slim_infer
--cpu_threads:1|4
--det_batch_size:1
--rec_batch_size:1
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
test_tipc/docs/test_lite_arm_cp
u_cp
p.md
→
test_tipc/docs/test_lite_arm_cpp.md
浏览文件 @
2f5420f0
# Lite\_arm\_cp
u\_cp
p预测功能测试
# Lite\_arm\_cpp预测功能测试
Lite
\_
arm
\_
cp
u
\_
cpp预测功能测试的主程序为
`test_lite_arm_cpu_cpp.sh`
,可以在ARM CPU
上基于Lite预测库测试模型的C++推理功能。
Lite
\_
arm
\_
cp
p预测功能测试的主程序为
`test_lite_arm_cpp.sh`
,可以在ARM
上基于Lite预测库测试模型的C++推理功能。
## 1. 测试结论汇总
...
...
@@ -10,12 +10,13 @@ Lite\_arm\_cpu\_cpp预测功能测试的主程序为`test_lite_arm_cpu_cpp.sh`
-
模型类型:包括正常模型(FP32)和量化模型(INT8)
-
batch-size:包括1和4
-
threads:包括1和4
-
predictor数量:包括
多predictor预测和单
predictor预测
-
predictor数量:包括
单predictor预测和多
predictor预测
-
预测库来源:包括下载方式和编译方式
-
测试硬件:ARM
\_
CPU/ARM
\_
GPU_OPENCL
| 模型类型 | batch-size | threads | predictor数量 | 预测库来源 |
| :----: | :----: | :----: | :----: | :----: |
| 正常模型/量化模型 | 1 | 1/4 |
1 | 下载方式
|
| 模型类型 | batch-size | threads | predictor数量 | 预测库来源 |
测试硬件 |
| :----: | :----: | :----: | :----: | :----: |
:----: |
| 正常模型/量化模型 | 1 | 1/4 |
单/多 | 下载方式 | ARM
\_
CPU/ARM
\_
GPU_OPENCL
|
## 2. 测试流程
...
...
@@ -23,21 +24,40 @@ Lite\_arm\_cpu\_cpp预测功能测试的主程序为`test_lite_arm_cpu_cpp.sh`
### 2.1 功能测试
先运行
`prepare_lite.sh`
,运行后会在当前路径下生成
`test_lite.tar`
,其中包含了测试数据、测试模型和用于预测的可执行文件。将
`test_lite.tar`
上传到被测试的手机上,在手机的终端解压该文件,进入
`test_lite`
目录中,然后运行
`test_lite_arm_cpu_cpp.sh`
进行测试,最终在
`test_lite/output`
目录下生成
`lite_*.log`
后缀的日志文件。
先运行
`prepare_lite_cpp.sh`
,运行后会在当前路径下生成
`test_lite.tar`
,其中包含了测试数据、测试模型和用于预测的可执行文件。将
`test_lite.tar`
上传到被测试的手机上,在手机的终端解压该文件,进入
`test_lite`
目录中,然后运行
`test_lite_arm_cpp.sh`
进行测试,最终在
`test_lite/output`
目录下生成
`lite_*.log`
后缀的日志文件。
#### 2.1.1 基于ARM\_CPU测试
```
shell
# 数据和模型准备
bash test_tipc/prepare_lite.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
bash test_tipc/prepare_lite
_cpp
.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
# 手机端测试:
bash test_lite_arm_cp
u_cp
p.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
```
**注意**
:由于运行该项目需要bash等命令,传统的adb方式不能很好的安装。所以此处推荐通在手机上开启虚拟终端的方式连接电脑,连接方式可以参考
[
安卓手机termux连接电脑
](
./termux_for_android.md
)
。
#### 2.1.2 基于ARM\_GPU\_OPENCL测试
```
shell
# 数据和模型准备
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
# 手机端测试:
bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
```
**注意**
:
1.
由于运行该项目需要bash等命令,传统的adb方式不能很好的安装。所以此处推荐通在手机上开启虚拟终端的方式连接电脑,连接方式可以参考
[
安卓手机termux连接电脑
](
./termux_for_android.md
)
。
2.
如果测试文本检测和识别完整的pipeline,在执行
`prepare_lite_cpp.sh`
时,配置文件需替换为
`test_tipc/configs/ppocr_system_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt`
。在手机端测试阶段,配置文件同样修改为该文件。
###
#
运行结果
###
2.2
运行结果
各测试的运行情况会打印在
`./output/`
中:
运行成功时会输出:
...
...
test_tipc/prepare_lite.sh
→
test_tipc/prepare_lite
_cpp
.sh
浏览文件 @
2f5420f0
...
...
@@ -6,22 +6,59 @@ dataline=$(cat ${FILENAME})
IFS
=
$'
\n
'
lines
=(
${
dataline
}
)
IFS
=
$'
\n
'
lite_model_list
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
inference_cmd
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
DEVICE
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
det_lite_model_list
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
rec_lite_model_list
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
cls_lite_model_list
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
if
[[
$inference_cmd
=
~
"det"
]]
;
then
lite_model_list
=
${
det_lite_model_list
}
elif
[[
$inference_cmd
=
~
"rec"
]]
;
then
lite_model_list
=(
${
rec_lite_model_list
[*]
}
${
cls_lite_model_list
[*]
}
)
elif
[[
$inference_cmd
=
~
"system"
]]
;
then
lite_model_list
=(
${
det_lite_model_list
[*]
}
${
rec_lite_model_list
[*]
}
${
cls_lite_model_list
[*]
}
)
else
echo
"inference_cmd is wrong, please check."
exit
1
fi
if
[
${
DEVICE
}
=
"ARM_CPU"
]
;
then
valid_targets
=
"arm"
paddlelite_url
=
"https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz"
end_index
=
"66"
elif
[
${
DEVICE
}
=
"ARM_GPU_OPENCL"
]
;
then
valid_targets
=
"opencl"
paddlelite_url
=
"https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.armv8.clang.with_exception.with_extra.with_cv.opencl.tar.gz"
end_index
=
"71"
else
echo
"DEVICE only suport ARM_CPU, ARM_GPU_OPENCL."
exit
2
fi
# prepare lite .nb model
pip
install
paddlelite
==
2.
9
pip
install
paddlelite
==
2.
10-rc
current_dir
=
${
PWD
}
IFS
=
"|"
model_path
=
./inference_models
for
model
in
${
lite_model_list
[*]
}
;
do
inference_model_url
=
https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/
${
model
}
.tar
if
[[
$model
=
~
"PP-OCRv2"
]]
;
then
inference_model_url
=
https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/
${
model
}
.tar
elif
[[
$model
=
~
"v2.0"
]]
;
then
inference_model_url
=
https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/
${
model
}
.tar
else
echo
"Model is wrong, please check."
exit
3
fi
inference_model
=
${
inference_model_url
##*/
}
wget
-nc
-P
${
model_path
}
${
inference_model_url
}
cd
${
model_path
}
&&
tar
-xf
${
inference_model
}
&&
cd
../
model_dir
=
${
model_path
}
/
${
inference_model
%.*
}
model_file
=
${
model_dir
}
/inference.pdmodel
param_file
=
${
model_dir
}
/inference.pdiparams
paddle_lite_opt
--model_dir
=
${
model_dir
}
--model_file
=
${
model_file
}
--param_file
=
${
param_file
}
--valid_targets
=
arm
--optimize_out
=
${
model_dir
}
_opt
paddle_lite_opt
--model_dir
=
${
model_dir
}
--model_file
=
${
model_file
}
--param_file
=
${
param_file
}
--valid_targets
=
${
valid_targets
}
--optimize_out
=
${
model_dir
}
_opt
done
# prepare test data
...
...
@@ -35,18 +72,19 @@ cd ./inference_models && tar -xf ${inference_model} && cd ../
cd
./test_data
&&
tar
-xf
${
data_file
}
&&
rm
${
data_file
}
&&
cd
../
# prepare lite env
paddlelite_url
=
https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz
paddlelite_zipfile
=
$(
echo
$paddlelite_url
|
awk
-F
"/"
'{print $NF}'
)
paddlelite_file
=
${
paddlelite_zipfile
:0:
66
}
paddlelite_file
=
${
paddlelite_zipfile
:0:
${
end_index
}
}
wget
${
paddlelite_url
}
&&
tar
-xf
${
paddlelite_zipfile
}
mkdir
-p
${
paddlelite_file
}
/demo/cxx/ocr/test_lite
cp
-r
${
model_path
}
/
*
_opt.nb test_data
${
paddlelite_file
}
/demo/cxx/ocr/test_lite
cp
ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt
${
paddlelite_file
}
/demo/cxx/ocr/test_lite
cp
-r
./deploy/lite/
*
${
paddlelite_file
}
/demo/cxx/ocr/
cp
${
paddlelite_file
}
/cxx/lib/libpaddle_light_api_shared.so
${
paddlelite_file
}
/demo/cxx/ocr/test_lite
cp
${
FILENAME
}
test_tipc/test_lite_arm_cp
u_cp
p.sh test_tipc/common_func.sh
${
paddlelite_file
}
/demo/cxx/ocr/test_lite
cp
${
FILENAME
}
test_tipc/test_lite_arm_cpp.sh test_tipc/common_func.sh
${
paddlelite_file
}
/demo/cxx/ocr/test_lite
cd
${
paddlelite_file
}
/demo/cxx/ocr/
git clone https://github.com/cuicheng01/AutoLog.git
# make
make
-j
sleep
1
make
-j
...
...
test_tipc/readme.md
浏览文件 @
2f5420f0
...
...
@@ -83,10 +83,11 @@ test_tipc/
├── cpp_ppocr_det_mobile_results_fp16.txt
# 预存的mobile版ppocr检测模型c++预测的fp16精度的结果
├── ...
├── prepare.sh
# 完成test_*.sh运行所需要的数据和模型下载
├── prepare_lite_cpp.sh
# 完成手机端test_*.sh运行所需要的数据、模型、可执行文件
├── test_train_inference_python.sh
# 测试python训练预测的主程序
├── test_inference_cpp.sh
# 测试c++预测的主程序
├── test_serving.sh
# 测试serving部署预测的主程序
├── test_lite_arm_cp
u_cpp.sh
# 测试lite在arm_cpu
上部署的C++预测的主程序
├── test_lite_arm_cp
p.sh
# 测试lite在arm
上部署的C++预测的主程序
├── compare_results.py
# 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
└── readme.md
# 使用文档
```
...
...
@@ -125,5 +126,5 @@ test_tipc/
[
test_train_inference_python 使用
](
docs/test_train_inference_python.md
)
[
test_inference_cpp 使用
](
docs/test_inference_cpp.md
)
[
test_serving 使用
](
docs/test_serving.md
)
[
test_lite_arm_cp
u_cpp 使用
](
docs/test_lite_arm_cpu
_cpp.md
)
[
test_lite_arm_cp
p 使用
](
docs/test_lite_arm
_cpp.md
)
[
test_paddle2onnx 使用
](
docs/test_paddle2onnx.md
)
test_tipc/test_lite_arm_cpp.sh
0 → 100644
浏览文件 @
2f5420f0
#!/bin/bash
source
./common_func.sh
export
LD_LIBRARY_PATH
=
${
PWD
}
:
$LD_LIBRARY_PATH
FILENAME
=
$1
dataline
=
$(
cat
$FILENAME
)
# parser params
IFS
=
$'
\n
'
lines
=(
${
dataline
}
)
# parser lite inference
inference_cmd
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
runtime_device
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
det_model_list
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
rec_model_list
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
cls_model_list
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
cpu_threads_list
=
$(
func_parser_value
"
${
lines
[6]
}
"
)
det_batch_size_list
=
$(
func_parser_value
"
${
lines
[7]
}
"
)
rec_batch_size_list
=
$(
func_parser_value
"
${
lines
[8]
}
"
)
infer_img_dir_list
=
$(
func_parser_value
"
${
lines
[9]
}
"
)
config_dir
=
$(
func_parser_value
"
${
lines
[10]
}
"
)
rec_dict_dir
=
$(
func_parser_value
"
${
lines
[11]
}
"
)
benchmark_value
=
$(
func_parser_value
"
${
lines
[12]
}
"
)
if
[[
$inference_cmd
=
~
"det"
]]
;
then
lite_model_list
=
${
det_lite_model_list
}
elif
[[
$inference_cmd
=
~
"rec"
]]
;
then
lite_model_list
=(
${
rec_lite_model_list
[*]
}
${
cls_lite_model_list
[*]
}
)
elif
[[
$inference_cmd
=
~
"system"
]]
;
then
lite_model_list
=(
${
det_lite_model_list
[*]
}
${
rec_lite_model_list
[*]
}
${
cls_lite_model_list
[*]
}
)
else
echo
"inference_cmd is wrong, please check."
exit
1
fi
LOG_PATH
=
"./output"
mkdir
-p
${
LOG_PATH
}
status_log
=
"
${
LOG_PATH
}
/results.log"
function
func_test_det
(){
IFS
=
'|'
_script
=
$1
_det_model
=
$2
_log_path
=
$3
_img_dir
=
$4
_config
=
$5
if
[[
$_det_model
=
~
"slim"
]]
;
then
precision
=
"INT8"
else
precision
=
"FP32"
fi
# lite inference
for
num_threads
in
${
cpu_threads_list
[*]
}
;
do
for
det_batchsize
in
${
det_batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/lite_
${
_det_model
}
_runtime_device_
${
runtime_device
}
_precision_
${
precision
}
_det_batchsize_
${
det_batchsize
}
_threads_
${
num_threads
}
.log"
command
=
"
${
_script
}
${
_det_model
}
${
runtime_device
}
${
precision
}
${
num_threads
}
${
det_batchsize
}
${
_img_dir
}
${
_config
}
${
benchmark_value
}
>
${
_save_log_path
}
2>&1"
eval
${
command
}
status_check
$?
"
${
command
}
"
"
${
status_log
}
"
done
done
}
function
func_test_rec
(){
IFS
=
'|'
_script
=
$1
_rec_model
=
$2
_cls_model
=
$3
_log_path
=
$4
_img_dir
=
$5
_config
=
$6
_rec_dict_dir
=
$7
if
[[
$_det_model
=
~
"slim"
]]
;
then
_precision
=
"INT8"
else
_precision
=
"FP32"
fi
# lite inference
for
num_threads
in
${
cpu_threads_list
[*]
}
;
do
for
rec_batchsize
in
${
rec_batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/lite_
${
_rec_model
}
_
${
cls_model
}
_runtime_device_
${
runtime_device
}
_precision_
${
_precision
}
_rec_batchsize_
${
rec_batchsize
}
_threads_
${
num_threads
}
.log"
command
=
"
${
_script
}
${
_rec_model
}
${
_cls_model
}
${
runtime_device
}
${
_precision
}
${
num_threads
}
${
rec_batchsize
}
${
_img_dir
}
${
_config
}
${
_rec_dict_dir
}
${
benchmark_value
}
>
${
_save_log_path
}
2>&1"
eval
${
command
}
status_check
$?
"
${
command
}
"
"
${
status_log
}
"
done
done
}
function
func_test_system
(){
IFS
=
'|'
_script
=
$1
_det_model
=
$2
_rec_model
=
$3
_cls_model
=
$4
_log_path
=
$5
_img_dir
=
$6
_config
=
$7
_rec_dict_dir
=
$8
if
[[
$_det_model
=
~
"slim"
]]
;
then
_precision
=
"INT8"
else
_precision
=
"FP32"
fi
# lite inference
for
num_threads
in
${
cpu_threads_list
[*]
}
;
do
for
det_batchsize
in
${
det_batch_size_list
[*]
}
;
do
for
rec_batchsize
in
${
rec_batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/lite_
${
_det_model
}
_
${
_rec_model
}
_
${
_cls_model
}
_runtime_device_
${
runtime_device
}
_precision_
${
_precision
}
_det_batchsize_
${
det_batchsize
}
_rec_batchsize_
${
rec_batchsize
}
_threads_
${
num_threads
}
.log"
command
=
"
${
_script
}
${
_det_model
}
${
_rec_model
}
${
_cls_model
}
${
runtime_device
}
${
_precision
}
${
num_threads
}
${
det_batchsize
}
${
_img_dir
}
${
_config
}
${
_rec_dict_dir
}
${
benchmark_value
}
>
${
_save_log_path
}
2>&1"
eval
${
command
}
status_check
$?
"
${
command
}
"
"
${
status_log
}
"
done
done
done
}
echo
"################### run test ###################"
if
[[
$inference_cmd
=
~
"det"
]]
;
then
IFS
=
"|"
det_model_list
=(
${
det_model_list
[*]
}
)
for
i
in
{
0..1
}
;
do
#run lite inference
for
img_dir
in
${
infer_img_dir_list
[*]
}
;
do
func_test_det
"
${
inference_cmd
}
"
"
${
det_model_list
[i]
}
_opt.nb"
"
${
LOG_PATH
}
"
"
${
img_dir
}
"
"
${
config_dir
}
"
done
done
elif
[[
$inference_cmd
=
~
"rec"
]]
;
then
IFS
=
"|"
rec_model_list
=(
${
rec_model_list
[*]
}
)
cls_model_list
=(
${
cls_model_list
[*]
}
)
for
i
in
{
0..1
}
;
do
#run lite inference
for
img_dir
in
${
infer_img_dir_list
[*]
}
;
do
func_test_rec
"
${
inference_cmd
}
"
"
${
rec_model
}
_opt.nb"
"
${
cls_model_list
[i]
}
_opt.nb"
"
${
LOG_PATH
}
"
"
${
img_dir
}
"
"
${
rec_dict_dir
}
"
"
${
config_dir
}
"
done
done
elif
[[
$inference_cmd
=
~
"system"
]]
;
then
IFS
=
"|"
det_model_list
=(
${
det_model_list
[*]
}
)
rec_model_list
=(
${
rec_model_list
[*]
}
)
cls_model_list
=(
${
cls_model_list
[*]
}
)
for
i
in
{
0..1
}
;
do
#run lite inference
for
img_dir
in
${
infer_img_dir_list
[*]
}
;
do
func_test_system
"
${
inference_cmd
}
"
"
${
det_model_list
[i]
}
_opt.nb"
"
${
rec_model_list
[i]
}
_opt.nb"
"
${
cls_model_list
[i]
}
_opt.nb"
"
${
LOG_PATH
}
"
"
${
img_dir
}
"
"
${
config_dir
}
"
"
${
rec_dict_dir
}
"
done
done
fi
test_tipc/test_lite_arm_cpu_cpp.sh
已删除
100644 → 0
浏览文件 @
eb8bc011
#!/bin/bash
source
./common_func.sh
export
LD_LIBRARY_PATH
=
${
PWD
}
:
$LD_LIBRARY_PATH
FILENAME
=
$1
dataline
=
$(
cat
$FILENAME
)
# parser params
IFS
=
$'
\n
'
lines
=(
${
dataline
}
)
# parser lite inference
lite_inference_cmd
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
lite_model_dir_list
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
runtime_device
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
lite_cpu_threads_list
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
lite_batch_size_list
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
lite_infer_img_dir_list
=
$(
func_parser_value
"
${
lines
[8]
}
"
)
lite_config_dir
=
$(
func_parser_value
"
${
lines
[9]
}
"
)
lite_rec_dict_dir
=
$(
func_parser_value
"
${
lines
[10]
}
"
)
lite_benchmark_value
=
$(
func_parser_value
"
${
lines
[11]
}
"
)
LOG_PATH
=
"./output"
mkdir
-p
${
LOG_PATH
}
status_log
=
"
${
LOG_PATH
}
/results.log"
function
func_lite
(){
IFS
=
'|'
_script
=
$1
_lite_model
=
$2
_log_path
=
$3
_img_dir
=
$4
_config
=
$5
if
[[
$lite_model
=
~
"slim"
]]
;
then
precision
=
"INT8"
else
precision
=
"FP32"
fi
# lite inference
for
num_threads
in
${
lite_cpu_threads_list
[*]
}
;
do
for
batchsize
in
${
lite_batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/lite_
${
_lite_model
}
_runtime_device_
${
runtime_device
}
_precision_
${
precision
}
_batchsize_
${
batchsize
}
_threads_
${
num_threads
}
.log"
command
=
"
${
_script
}
${
_lite_model
}
${
runtime_device
}
${
precision
}
${
num_threads
}
${
batchsize
}
${
_img_dir
}
${
_config
}
${
lite_benchmark_value
}
>
${
_save_log_path
}
2>&1"
eval
${
command
}
status_check
$?
"
${
command
}
"
"
${
status_log
}
"
done
done
}
echo
"################### run test ###################"
IFS
=
"|"
for
lite_model
in
${
lite_model_dir_list
[*]
}
;
do
#run lite inference
for
img_dir
in
${
lite_infer_img_dir_list
[*]
}
;
do
func_lite
"
${
lite_inference_cmd
}
"
"
${
lite_model
}
_opt.nb"
"
${
LOG_PATH
}
"
"
${
img_dir
}
"
"
${
lite_config_dir
}
"
done
done
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录