Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
1d7c9f81
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1d7c9f81
编写于
12月 01, 2021
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'dygraph' of
https://github.com/PaddlePaddle/PaddleOCR
into test_v11
上级
3f3b915b
b1d26ded
变更
63
隐藏空白更改
内联
并排
Showing
63 changed file
with
3127 addition
and
735 deletion
+3127
-735
benchmark/run_benchmark_det.sh
benchmark/run_benchmark_det.sh
+1
-1
benchmark/run_det.sh
benchmark/run_det.sh
+8
-3
deploy/slim/prune/export_prune_model.py
deploy/slim/prune/export_prune_model.py
+23
-9
deploy/slim/prune/sensitivity_anal.py
deploy/slim/prune/sensitivity_anal.py
+16
-5
doc/doc_ch/code_and_doc.md
doc/doc_ch/code_and_doc.md
+324
-0
doc/doc_ch/detection.md
doc/doc_ch/detection.md
+4
-0
doc/doc_ch/inference.md
doc/doc_ch/inference.md
+126
-0
doc/joinus.PNG
doc/joinus.PNG
+0
-0
ppocr/modeling/backbones/__init__.py
ppocr/modeling/backbones/__init__.py
+1
-5
ppocr/modeling/backbones/rec_mobilenet_v3.py
ppocr/modeling/backbones/rec_mobilenet_v3.py
+3
-0
ppocr/modeling/backbones/table_mobilenet_v3.py
ppocr/modeling/backbones/table_mobilenet_v3.py
+0
-287
ppocr/modeling/backbones/table_resnet_vd.py
ppocr/modeling/backbones/table_resnet_vd.py
+0
-280
ppocr/modeling/transforms/tps_spatial_transformer.py
ppocr/modeling/transforms/tps_spatial_transformer.py
+1
-1
ppocr/postprocess/east_postprocess.py
ppocr/postprocess/east_postprocess.py
+10
-3
ppocr/utils/save_load.py
ppocr/utils/save_load.py
+8
-2
requirements.txt
requirements.txt
+1
-2
test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
...el_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+2
-4
test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
...el_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+3
-5
test_tipc/configs/ch_ppocr_mobile_v2.0_rec/train_infer_python.txt
...c/configs/ch_ppocr_mobile_v2.0_rec/train_infer_python.txt
+51
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml
...pocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml
+102
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/train_infer_python.txt
...figs/ch_ppocr_mobile_v2.0_rec_FPGM/train_infer_python.txt
+51
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
...el_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+21
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
..._ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
+101
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
...pocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
+101
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
...figs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
+51
-0
test_tipc/configs/ch_ppocr_server_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
...el_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
+2
-4
test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml
...pc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml
+0
-0
test_tipc/configs/ch_ppocr_server_v2.0_rec/train_infer_python.txt
...c/configs/ch_ppocr_server_v2.0_rec/train_infer_python.txt
+51
-0
test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
+135
-0
test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
..._tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
+1
-1
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
+134
-0
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
+103
-0
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
+52
-0
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
...onfigs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
+97
-0
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
...nfigs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
.../configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
+96
-0
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
...configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
...gs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
+103
-0
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
...onfigs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
+52
-0
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
...configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
+101
-0
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/train_infer_python.txt
...onfigs/rec_mv3_tps_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r31_sar/rec_r31_sar.yml
test_tipc/configs/rec_r31_sar/rec_r31_sar.yml
+98
-0
test_tipc/configs/rec_r31_sar/train_infer_python.txt
test_tipc/configs/rec_r31_sar/train_infer_python.txt
+52
-0
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
...igs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
+96
-0
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/train_infer_python.txt
...gs/rec_r34_vd_none_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml
...nfigs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml
+94
-0
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/train_infer_python.txt
...figs/rec_r34_vd_none_none_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml
..._r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml
+102
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt
...igs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt
+52
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
...figs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
+100
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/train_infer_python.txt
...igs/rec_r34_vd_tps_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml
..._tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml
+108
-0
test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt
...pc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt
+52
-0
test_tipc/docs/jeston_test_train_inference_python.md
test_tipc/docs/jeston_test_train_inference_python.md
+5
-5
test_tipc/prepare.sh
test_tipc/prepare.sh
+14
-10
test_tipc/test_inference_jeston.sh
test_tipc/test_inference_jeston.sh
+0
-87
test_tipc/test_inference_python.sh
test_tipc/test_inference_python.sh
+2
-14
test_tipc/test_train_inference_python.sh
test_tipc/test_train_inference_python.sh
+4
-4
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+1
-1
tools/infer/utility.py
tools/infer/utility.py
+2
-2
tools/infer_det.py
tools/infer_det.py
+1
-0
未找到文件。
benchmark/run_benchmark_det.sh
浏览文件 @
1d7c9f81
...
...
@@ -17,7 +17,7 @@ function _set_params(){
skip_steps
=
2
# 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
keyword
=
"ips:"
# 解析日志,筛选出数据所在行的关键字 (必填)
index
=
"1"
model_name
=
${
model_item
}
_
${
run_mode
}
_
bs
${
batch_size
}
_
${
fp_item
}
# model_item 用于yml文件名匹配,model_name 用于数据入库前端展示
model_name
=
${
model_item
}
_bs
${
batch_size
}
_
${
fp_item
}
# model_item 用于yml文件名匹配,model_name 用于数据入库前端展示
# 以下不用修改
device
=
${
CUDA_VISIBLE_DEVICES
//,/
}
arr
=(
${
device
}
)
...
...
benchmark/run_det.sh
浏览文件 @
1d7c9f81
...
...
@@ -2,6 +2,7 @@
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
# 执行目录: ./PaddleOCR
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
log_path
=
${
LOG_PATH_INDEX_DIR
:-
$(
pwd
)
}
python
-m
pip
install
-r
requirements.txt
# 2 拷贝该模型需要数据、预训练模型
wget
-P
./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
&&
cd
train_data
&&
tar
xf icdar2015.tar
&&
cd
../
...
...
@@ -12,18 +13,22 @@ wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dyg
model_mode_list
=(
det_res18_db_v2.0 det_r50_vd_east det_r50_vd_pse
)
fp_item_list
=(
fp32
)
bs_list
=(
8 16
)
for
model_mode
in
${
model_mode_list
[@]
}
;
do
for
fp_item
in
${
fp_item_list
[@]
}
;
do
if
[
${
model_mode
}
==
"det_r50_vd_east"
]
;
then
bs_list
=(
16
)
else
bs_list
=(
8 16
)
fi
for
bs_item
in
${
bs_list
[@]
}
;
do
echo
"index is speed, 1gpus, begin,
${
model_name
}
"
run_mode
=
sp
log_name
=
ocr_
${
model_mode
}
_
${
run_mode
}
_bs
${
bs_item
}
_
${
fp_item
}
log_name
=
ocr_
${
model_mode
}
_
bs
${
bs_item
}
_
${
fp_item
}
_
${
run_mode
}
CUDA_VISIBLE_DEVICES
=
0 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
1
${
model_mode
}
|
tee
${
log_path
}
/
${
log_name
}
_speed_1gpus 2>&1
# (5min)
sleep
60
echo
"index is speed, 8gpus, run_mode is multi_process, begin,
${
model_name
}
"
run_mode
=
mp
log_name
=
ocr_
${
model_mode
}
_
${
run_mode
}
_bs
${
bs_item
}
_
${
fp_item
}
log_name
=
ocr_
${
model_mode
}
_
bs
${
bs_item
}
_
${
fp_item
}
_
${
run_mode
}
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
2
${
model_mode
}
|
tee
${
log_path
}
/
${
log_name
}
_speed_8gpus8p 2>&1
sleep
60
done
...
...
deploy/slim/prune/export_prune_model.py
浏览文件 @
1d7c9f81
...
...
@@ -52,12 +52,17 @@ def main(config, device, logger, vdl_writer):
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
])
logger
.
info
(
f
"FLOPs before pruning:
{
flops
}
"
)
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
input_shape
=
[
1
,
3
,
640
,
640
]
elif
config
[
'Architecture'
][
'model_type'
]
==
'rec'
:
input_shape
=
[
1
,
3
,
32
,
320
]
flops
=
paddle
.
flops
(
model
,
input_shape
)
logger
.
info
(
"FLOPs before pruning: {}"
.
format
(
flops
))
from
paddleslim.dygraph
import
FPGMFilterPruner
model
.
train
()
pruner
=
FPGMFilterPruner
(
model
,
[
1
,
3
,
640
,
640
]
)
pruner
=
FPGMFilterPruner
(
model
,
input_shape
)
# build metric
eval_class
=
build_metric
(
config
[
'Metric'
])
...
...
@@ -65,8 +70,13 @@ def main(config, device, logger, vdl_writer):
def
eval_fn
():
metric
=
program
.
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
)
logger
.
info
(
f
"metric['hmean']:
{
metric
[
'hmean'
]
}
"
)
return
metric
[
'hmean'
]
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
main_indicator
=
'hmean'
else
:
main_indicator
=
'acc'
logger
.
info
(
"metric[{}]: {}"
.
format
(
main_indicator
,
metric
[
main_indicator
]))
return
metric
[
main_indicator
]
params_sensitive
=
pruner
.
sensitive
(
eval_func
=
eval_fn
,
...
...
@@ -81,18 +91,22 @@ def main(config, device, logger, vdl_writer):
# calculate pruned params's ratio
params_sensitive
=
pruner
.
_get_ratios_by_loss
(
params_sensitive
,
loss
=
0.02
)
for
key
in
params_sensitive
.
keys
():
logger
.
info
(
f
"
{
key
}
,
{
params_sensitive
[
key
]
}
"
)
logger
.
info
(
"{}, {}"
.
format
(
key
,
params_sensitive
[
key
])
)
plan
=
pruner
.
prune_vars
(
params_sensitive
,
[
0
])
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
]
)
logger
.
info
(
f
"FLOPs after pruning:
{
flops
}
"
)
flops
=
paddle
.
flops
(
model
,
input_shape
)
logger
.
info
(
"FLOPs after pruning: {}"
.
format
(
flops
)
)
# load pretrain model
load_model
(
config
,
model
)
metric
=
program
.
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
)
logger
.
info
(
f
"metric['hmean']:
{
metric
[
'hmean'
]
}
"
)
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
main_indicator
=
'hmean'
else
:
main_indicator
=
'acc'
logger
.
info
(
"metric['']: {}"
.
format
(
main_indicator
,
metric
[
main_indicator
]))
# start export model
from
paddle.jit
import
to_static
...
...
deploy/slim/prune/sensitivity_anal.py
浏览文件 @
1d7c9f81
...
...
@@ -73,13 +73,18 @@ def main(config, device, logger, vdl_writer):
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
input_shape
=
[
1
,
3
,
640
,
640
]
elif
config
[
'Architecture'
][
'model_type'
]
==
'rec'
:
input_shape
=
[
1
,
3
,
32
,
320
]
flops
=
paddle
.
flops
(
model
,
input_shape
)
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
])
logger
.
info
(
"FLOPs before pruning: {}"
.
format
(
flops
))
from
paddleslim.dygraph
import
FPGMFilterPruner
model
.
train
()
pruner
=
FPGMFilterPruner
(
model
,
[
1
,
3
,
640
,
640
])
pruner
=
FPGMFilterPruner
(
model
,
input_shape
)
# build loss
loss_class
=
build_loss
(
config
[
'Loss'
])
...
...
@@ -107,8 +112,14 @@ def main(config, device, logger, vdl_writer):
def
eval_fn
():
metric
=
program
.
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
False
)
logger
.
info
(
"metric['hmean']: {}"
.
format
(
metric
[
'hmean'
]))
return
metric
[
'hmean'
]
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
main_indicator
=
'hmean'
else
:
main_indicator
=
'acc'
logger
.
info
(
"metric[{}]: {}"
.
format
(
main_indicator
,
metric
[
main_indicator
]))
return
metric
[
main_indicator
]
run_sensitive_analysis
=
False
"""
...
...
@@ -149,7 +160,7 @@ def main(config, device, logger, vdl_writer):
plan
=
pruner
.
prune_vars
(
params_sensitive
,
[
0
])
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
]
)
flops
=
paddle
.
flops
(
model
,
input_shape
)
logger
.
info
(
"FLOPs after pruning: {}"
.
format
(
flops
))
# start train
...
...
doc/doc_ch/code_and_doc.md
0 → 100644
浏览文件 @
1d7c9f81
# 附录
本附录包含了Python、文档规范以及Pull Request流程,请各位开发者遵循相关内容
-
[
附录1:Python代码规范
](
#附录1
)
-
[
附录2:文档规范
](
#附录2
)
-
[
附录3:Pull Request说明
](
#附录3
)
<a
name=
"附录1"
></a>
## 附录1:Python代码规范
PaddleOCR的Python代码遵循
[
PEP8规范
](
https://www.python.org/dev/peps/pep-0008/
)
,其中一些关注的重点包括如下内容
-
空格
-
空格应该加在逗号、分号、冒号前,而非他们的后面
```python
# 正确:
print(x, y)
# 错误:
print(x , y)
```
-
在函数中指定关键字参数或默认参数值时, 不要在其两侧使用空格
```python
# 正确:
def complex(real, imag=0.0)
# 错误:
def complex(real, imag = 0.0)
```
-
注释
-
行内注释:行内注释使用
`#`
号表示,在代码与
`#`
之间需要空两个空格,
`#`
与注释之间应当空一个空格,例如
```python
x = x + 1 # Compensate for border
```
-
函数和方法:每个函数的定义后的描述应该包括以下内容:
- 函数描述:函数的作用,输入输出的
- Args:每个参数的名字以及对该参数的描述
- Returns:返回值的含义和类型
```python
def fetch_bigtable_rows(big_table, keys, other_silly_variable=None):
"""Fetches rows from a Bigtable.
Retrieves rows pertaining to the given keys from the Table instance
represented by big_table. Silly things may happen if
other_silly_variable is not None.
Args:
big_table: An open Bigtable Table instance.
keys: A sequence of strings representing the key of each table row
to fetch.
other_silly_variable: Another optional variable, that has a much
longer name than the other args, and which does nothing.
Returns:
A dict mapping keys to the corresponding table row data
fetched. Each row is represented as a tuple of strings. For
example:
{'Serak': ('Rigel VII', 'Preparer'),
'Zim': ('Irk', 'Invader'),
'Lrrr': ('Omicron Persei 8', 'Emperor')}
If a key from the keys argument is missing from the dictionary,
then that row was not found in the table.
"""
pass
```
<a
name=
"附录2"
></a>
## 附录2:文档规范
### 2.1 总体说明
-
文档位置:如果您增加的新功能可以补充在原有的Markdown文件中,请
**不要重新新建**
一个文件。如果您对添加的位置不清楚,可以先PR代码,然后在commit中询问官方人员。
-
新增Markdown文档名称:使用英文描述文档内容,一般由小写字母与下划线组合而成,例如
`add_new_algorithm.md`
-
新增Markdown文档格式:目录 - 正文 - FAQ
> 目录生成方法可以使用 [此网站](https://ecotrust-canada.github.io/markdown-toc/) 将md内容复制之后自动提取目录,然后在md文件的每个标题前添加 `<a name="XXXX"></a>`
-
中英双语:任何对文档的改动或新增都需要分别在中文和英文文档上进行。
### 2.2 格式规范
-
标题格式:文档标题格式按照:阿拉伯数字小数点组合 - 空格 - 标题的格式(例如
`2.1 XXXX`
,
`2. XXXX`
)
-
代码块:通过代码块格式展示需要运行的代码,在代码块前描述命令参数的含义。例如:
> 检测+方向分类器+识别全流程:设置方向分类器参数 `--use_angle_cls true` 后可对竖排文本进行识别。
>
> ```
> paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true
> ```
-
变量引用:如果在行内引用到代码变量或命令参数,需要用行内代码表示,例如上方
`--use_angle_cls true`
,并在前后各空一格
-
补充说明:通过引用格式
`>`
补充说明,或对注意事项进行说明
-
图片:如果在说明文档中增加了图片,请规范图片的命名形式(描述图片内容),并将图片添加在
`doc/`
下
<a
name=
"附录3"
></a>
## 附录3:Pull Request说明
### 3.1 PaddleOCR分支说明
PaddleOCR未来将维护2种分支,分别为:
-
release/x.x系列分支:为稳定的发行版本分支,也是默认分支。PaddleOCR会根据功能更新情况发布新的release分支,同时适配Paddle的release版本。随着版本迭代,release/x.x系列分支会越来越多,默认维护最新版本的release分支。
-
dygraph分支:为开发分支,适配Paddle动态图的dygraph版本,主要用于开发新功能。如果有同学需要进行二次开发,请选择dygraph分支。为了保证dygraph分支能在需要的时候拉出release/x.x分支,dygraph分支的代码只能使用Paddle最新release分支中有效的api。也就是说,如果Paddle dygraph分支中开发了新的api,但尚未出现在release分支代码中,那么请不要在PaddleOCR中使用。除此之外,对于不涉及api的性能优化、参数调整、策略更新等,都可以正常进行开发。
PaddleOCR的历史分支,未来将不再维护。考虑到一些同学可能仍在使用,这些分支还会继续保留:
-
develop分支:这个分支曾用于静态图的开发与测试,目前兼容>=1.7版本的Paddle。如果有特殊需求,要适配旧版本的Paddle,那还可以使用这个分支,但除了修复bug外不再更新代码。
PaddleOCR欢迎大家向repo中积极贡献代码,下面给出一些贡献代码的基本流程。
### 3.2 PaddleOCR代码提交流程与规范
> 如果你熟悉Git使用,可以直接跳转到 [3.2.10 提交代码的一些约定](#提交代码的一些约定)
#### 3.2.1 创建你的 `远程仓库`
-
在PaddleOCR的
[
GitHub首页
](
https://github.com/PaddlePaddle/PaddleOCR
)
,点击左上角
`Fork`
按钮,在你的个人目录下创建
`远程仓库`
,比如
`https://github.com/{your_name}/PaddleOCR`
。
![
banner
](
/Users/zhulingfeng01/OCR/PaddleOCR/doc/banner.png
)
-
将
`远程仓库`
Clone到本地
```
# 拉取develop分支的代码
git clone https://github.com/{your_name}/PaddleOCR.git -b dygraph
cd PaddleOCR
```
> 多数情况下clone失败是由于网络原因,请稍后重试或配置代理
#### 3.2.2 和 `远程仓库` 建立连接
首先查看当前
`远程仓库`
的信息。
```
git remote -v
# origin https://github.com/{your_name}/PaddleOCR.git (fetch)
# origin https://github.com/{your_name}/PaddleOCR.git (push)
```
只有clone的
`远程仓库`
的信息,也就是自己用户名下的 PaddleOCR,接下来我们创建一个原始 PaddleOCR 仓库的远程主机,命名为 upstream。
```
git remote add upstream https://github.com/PaddlePaddle/PaddleOCR.git
```
使用
`git remote -v`
查看当前
`远程仓库`
的信息,输出如下,发现包括了origin和upstream 2个
`远程仓库`
。
```
origin https://github.com/{your_name}/PaddleOCR.git (fetch)
origin https://github.com/{your_name}/PaddleOCR.git (push)
upstream https://github.com/PaddlePaddle/PaddleOCR.git (fetch)
upstream https://github.com/PaddlePaddle/PaddleOCR.git (push)
```
这主要是为了后续在提交pull request(PR)时,始终保持本地仓库最新。
#### 3.2.3 创建本地分支
可以基于当前分支创建新的本地分支,命令如下。
```
git checkout -b new_branch
```
也可以基于远程或者上游的分支创建新的分支,命令如下。
```
# 基于用户远程仓库(origin)的develop创建new_branch分支
git checkout -b new_branch origin/develop
# 基于上游远程仓库(upstream)的develop创建new_branch分支
# 如果需要从upstream创建新的分支,需要首先使用git fetch upstream获取上游代码
git checkout -b new_branch upstream/develop
```
最终会显示切换到新的分支,输出信息如下
```
Branch new_branch set up to track remote branch develop from upstream.
Switched to a new branch 'new_branch'
```
#### 3.2.4 使用pre-commit勾子
Paddle 开发人员使用 pre-commit 工具来管理 Git 预提交钩子。 它可以帮助我们格式化源代码(C++,Python),在提交(commit)前自动检查一些基本事宜(如每个文件只有一个 EOL,Git 中不要添加大文件等)。
pre-commit测试是 Travis-CI 中单元测试的一部分,不满足钩子的 PR 不能被提交到 PaddleOCR,首先安装并在当前目录运行它:
```
pip install pre-commit
pre-commit install
```
> 1. Paddle 使用 clang-format 来调整 C/C++ 源代码格式,请确保 `clang-format` 版本在 3.8 以上。
>
> 2. 通过pip install pre-commit和conda install -c conda-forge pre-commit安装的yapf稍有不同的,PaddleOCR 开发人员使用的是 `pip install pre-commit`。
#### 3.2.5 修改与提交代码
假设对PaddleOCR的
`README.md`
做了一些修改,可以通过
`git status`
查看改动的文件,然后使用
`git add`
添加改动文件。
```
git status # 查看改动文件
git add README.md
pre-commit
```
重复上述步骤,直到pre-comit格式检查不报错。如下所示。
[
![img
](
https://github.com/PaddlePaddle/PaddleClas/raw/release/2.3/docs/images/quick_start/community/003_precommit_pass.png
)
](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/images/quick_start/community/003_precommit_pass.png)
使用下面的命令完成提交。
```
git commit -m "your commit info"
```
#### 3.2.6 保持本地仓库最新
获取 upstream 的最新代码并更新当前分支。这里的upstream来自于2.2节的
`和远程仓库建立连接`
部分。
```
git fetch upstream
# 如果是希望提交到其他分支,则需要从upstream的其他分支pull代码,这里是develop
git pull upstream develop
```
#### 3.2.7 push到远程仓库
```
git push origin new_branch
```
#### 3.2.7 提交Pull Request
点击new pull request,选择本地分支和目标分支,如下图所示。在PR的描述说明中,填写该PR所完成的功能。接下来等待review,如果有需要修改的地方,参照上述步骤更新 origin 中的对应分支即可。
![
banner
](
/Users/zhulingfeng01/OCR/PaddleOCR/doc/pr.png
)
#### 3.2.8 签署CLA协议和通过单元测试
-
签署CLA 在首次向PaddlePaddle提交Pull Request时,您需要您签署一次CLA(Contributor License Agreement)协议,以保证您的代码可以被合入,具体签署方式如下:
1.
请您查看PR中的Check部分,找到license/cla,并点击右侧detail,进入CLA网站
2.
点击CLA网站中的“Sign in with GitHub to agree”,点击完成后将会跳转回您的Pull Request页面
#### 3.2.9 删除分支
-
删除远程分支
在 PR 被 merge 进主仓库后,我们可以在 PR 的页面删除远程仓库的分支。
也可以使用
`git push origin :分支名`
删除远程分支,如:
```
git push origin :new_branch
```
-
删除本地分支
```
# 切换到develop分支,否则无法删除当前分支
git checkout develop
# 删除new_branch分支
git branch -D new_branch
```
<a
name=
"提交代码的一些约定"
></a>
#### 3.2.10 提交代码的一些约定
为了使官方维护人员在评审代码时更好地专注于代码本身,请您每次提交代码时,遵守以下约定:
1)请保证Travis-CI 中单元测试能顺利通过。如果没过,说明提交的代码存在问题,官方维护人员一般不做评审。
2)提交Pull Request前:
-
请注意commit的数量。
原因:如果仅仅修改一个文件但提交了十几个commit,每个commit只做了少量的修改,这会给评审人带来很大困扰。评审人需要逐一查看每个commit才能知道做了哪些修改,且不排除commit之间的修改存在相互覆盖的情况。
建议:每次提交时,保持尽量少的commit,可以通过git commit --amend补充上次的commit。对已经Push到远程仓库的多个commit,可以参考
[
squash commits after push
](
https://stackoverflow.com/questions/5667884/how-to-squash-commits-in-git-after-they-have-been-pushed
)
。
-
请注意每个commit的名称:应能反映当前commit的内容,不能太随意。
3)如果解决了某个Issue的问题,请在该Pull Request的第一个评论框中加上:fix #issue_number,这样当该Pull Request被合并后,会自动关闭对应的Issue。关键词包括:close, closes, closed, fix, fixes, fixed, resolve, resolves, resolved,请选择合适的词汇。详细可参考
[
Closing issues via commit messages
](
https://help.github.com/articles/closing-issues-via-commit-messages
)
。
此外,在回复评审人意见时,请您遵守以下约定:
1)官方维护人员的每一个review意见都希望得到回复,这样会更好地提升开源社区的贡献。
-
对评审意见同意且按其修改完的,给个简单的Done即可;
-
对评审意见不同意的,请给出您自己的反驳理由。
2)如果评审意见比较多:
-
请给出总体的修改情况。
-
请采用
`start a review`
进行回复,而非直接回复的方式。原因是每个回复都会发送一封邮件,会造成邮件灾难。
\ No newline at end of file
doc/doc_ch/detection.md
浏览文件 @
1d7c9f81
...
...
@@ -247,3 +247,7 @@ Q1: 训练模型转inference 模型之后预测效果不一致?
**A**:此类问题出现较多,问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。以det_mv3_db.yml配置文件训练的模型为例,训练模型、inference模型预测结果不一致问题解决方式如下:
- 检查[trained model预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116),和[inference model的预测预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42)函数是否一致。算法在评估的时候,输入图像大小会影响精度,为了和论文保持一致,训练icdar15配置文件中将图像resize到[736, 1280],但是在inference model预测的时候只有一套默认参数,会考虑到预测速度问题,默认限制图像最长边为960做resize的。训练模型预处理和inference模型的预处理函数位于[ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- 检查[trained model后处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51),和[inference 后处理参数](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50)是否一致。
Q1: 训练EAST模型提示找不到lanms库?
**A**:执行pip3 install lanms-nova 即可。
doc/doc_ch/inference.md
浏览文件 @
1d7c9f81
...
...
@@ -34,6 +34,8 @@ inference 模型(`paddle.jit.save`保存的模型)
-
[
1. 超轻量中文OCR模型推理
](
#超轻量中文OCR模型推理
)
-
[
2. 其他模型推理
](
#其他模型推理
)
-
[
六、参数解释
](
参数解释
)
<a
name=
"训练模型转inference模型"
></a>
## 一、训练模型转inference模型
...
...
@@ -394,3 +396,127 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
执行命令后,识别结果图像如下:
![](
../imgs_results/img_10_east_starnet.jpg
)
<a
name=
"参数解释"
></a>
# 六、参数解释
更多关于预测过程的参数解释如下所示。
*
全局信息
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| image_dir | str | 无,必须显式指定 | 图像或者文件夹路径 |
| vis_font_path | str | "./doc/fonts/simfang.ttf" | 用于可视化的字体路径 |
| drop_score | float | 0.5 | 识别得分小于该值的结果会被丢弃,不会作为返回结果 |
| use_pdserving | bool | False | 是否使用Paddle Serving进行预测 |
| warmup | bool | False | 是否开启warmup,在统计预测耗时的时候,可以使用这种方法 |
| draw_img_save_dir | str | "./inference_results" | 系统串联预测OCR结果的保存文件夹 |
| save_crop_res | bool | False | 是否保存OCR的识别文本图像 |
| crop_res_save_dir | str | "./output" | 保存OCR识别出来的文本图像路径 |
| use_mp | bool | False | 是否开启多进程预测 |
| total_process_num | int | 6 | 开启的进城数,
`use_mp`
为
`True`
时生效 |
| process_id | int | 0 | 当前进程的id号,无需自己修改 |
| benchmark | bool | False | 是否开启benchmark,对预测速度、显存占用等进行统计 |
| save_log_path | str | "./log_output/" | 开启
`benchmark`
时,日志结果的保存文件夹 |
| show_log | bool | True | 是否显示预测中的日志信息 |
| use_onnx | bool | False | 是否开启onnx预测 |
*
预测引擎相关
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| use_gpu | bool | True | 是否使用GPU进行预测 |
| ir_optim | bool | True | 是否对计算图进行分析与优化,开启后可以加速预测过程 |
| use_tensorrt | bool | False | 是否开启tensorrt |
| min_subgraph_size | int | 15 | tensorrt中最小子图size,当子图的size大于该值时,才会尝试对该子图使用trt engine计算 |
| precision | str | fp32 | 预测的精度,支持
`fp32`
,
`fp16`
,
`int8`
3种输入 |
| enable_mkldnn | bool | True | 是否开启mkldnn |
| cpu_threads | int | 10 | 开启mkldnn时,cpu预测的线程数 |
*
文本检测模型相关
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| det_algorithm | str | "DB" | 文本检测算法名称,目前支持
`DB`
,
`EAST`
,
`SAST`
,
`PSE`
|
| det_model_dir | str | xx | 检测inference模型路径 |
| det_limit_side_len | int | 960 | 检测的图像边长限制 |
| det_limit_type | str | "max" | 检测的变成限制类型,目前支持
`min`
,
`max`
,
`min`
表示保证图像最短边不小于
`det_limit_side_len`
,
`max`
表示保证图像最长边不大于
`det_limit_side_len`
|
其中,DB算法相关参数如下
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| det_db_thresh | float | 0.3 | DB输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点 |
| det_db_box_thresh | float | 0.6 | 检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域 |
| det_db_unclip_ratio | float | 1.5 |
`Vatti clipping`
算法的扩张系数,使用该方法对文字区域进行扩张 |
| max_batch_size | int | 10 | 预测的batch size |
| use_dilation | bool | False | 是否对分割结果进行膨胀以获取更优检测效果 |
| det_db_score_mode | str | "fast" | DB的检测结果得分计算方法,支持
`fast`
和
`slow`
,
`fast`
是根据polygon的外接矩形边框内的所有像素计算平均得分,
`slow`
是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
EAST算法相关参数如下
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| det_east_score_thresh | float | 0.8 | EAST后处理中score map的阈值 |
| det_east_cover_thresh | float | 0.1 | EAST后处理中文本框的平均得分阈值 |
| det_east_nms_thresh | float | 0.2 | EAST后处理中nms的阈值 |
SAST算法相关参数如下
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| det_sast_score_thresh | float | 0.5 | SAST后处理中的得分阈值 |
| det_sast_nms_thresh | float | 0.5 | SAST后处理中nms的阈值 |
| det_sast_polygon | bool | False | 是否多边形检测,弯曲文本场景(如Total-Text)设置为True |
PSE算法相关参数如下
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| det_pse_thresh | float | 0.0 | 对输出图做二值化的阈值 |
| det_pse_box_thresh | float | 0.85 | 对box进行过滤的阈值,低于此阈值的丢弃 |
| det_pse_min_area | float | 16 | box的最小面积,低于此阈值的丢弃 |
| det_pse_box_type | str | "box" | 返回框的类型,box:四点坐标,poly: 弯曲文本的所有点坐标 |
| det_pse_scale | int | 1 | 输入图像相对于进后处理的图的比例,如
`640*640`
的图像,网络输出为
`160*160`
,scale为2的情况下,进后处理的图片shape为
`320*320`
。这个值调大可以加快后处理速度,但是会带来精度的下降 |
*
文本识别模型相关
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| rec_algorithm | str | "CRNN" | 文本识别算法名称,目前支持
`CRNN`
,
`SRN`
,
`RARE`
,
`NETR`
,
`SAR`
|
| rec_model_dir | str | 无,如果使用识别模型,该项是必填项 | 识别inference模型路径 |
| rec_image_shape | list | [3, 32, 320] | 识别时的图像尺寸, |
| rec_batch_num | int | 6 | 识别的batch size |
| max_text_length | int | 25 | 识别结果最大长度,在
`SRN`
中有效 |
| rec_char_dict_path | str | "./ppocr/utils/ppocr_keys_v1.txt" | 识别的字符字典文件 |
| use_space_char | bool | True | 是否包含空格,如果为
`True`
,则会在最后字符字典中补充
`空格`
字符 |
*
端到端文本检测与识别模型相关
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| e2e_algorithm | str | "PGNet" | 端到端算法名称,目前支持
`PGNet`
|
| e2e_model_dir | str | 无,如果使用端到端模型,该项是必填项 | 端到端模型inference模型路径 |
| e2e_limit_side_len | int | 768 | 端到端的输入图像边长限制 |
| e2e_limit_type | str | "max" | 端到端的边长限制类型,目前支持
`min`
,
`max`
,
`min`
表示保证图像最短边不小于
`e2e_limit_side_len`
,
`max`
表示保证图像最长边不大于
`e2e_limit_side_len`
|
| e2e_pgnet_score_thresh | float | xx | xx |
| e2e_char_dict_path | str | "./ppocr/utils/ic15_dict.txt" | 识别的字典文件路径 |
| e2e_pgnet_valid_set | str | "totaltext" | 验证集名称,目前支持
`totaltext`
,
`partvgg`
,不同数据集对应的后处理方式不同,与训练过程保持一致即可 |
| e2e_pgnet_mode | str | "fast" | PGNet的检测结果得分计算方法,支持
`fast`
和
`slow`
,
`fast`
是根据polygon的外接矩形边框内的所有像素计算平均得分,
`slow`
是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
*
方向分类器模型相关
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| use_angle_cls | bool | False | 是否使用方向分类器 |
| cls_model_dir | str | 无,如果需要使用,则必须显式指定路径 | 方向分类器inference模型路径 |
| cls_image_shape | list | [3, 48, 192] | 预测尺度 |
| label_list | list | ['0', '180'] | class id对应的角度值 |
| cls_batch_num | int | 6 | 方向分类器预测的batch size |
| cls_thresh | float | 0.9 | 预测阈值,模型预测结果为180度,且得分大于该阈值时,认为最终预测结果为180度,需要翻转 |
doc/joinus.PNG
查看替换文件 @
3f3b915b
浏览文件 @
1d7c9f81
193.1 KB
|
W:
|
H:
192.6 KB
|
W:
|
H:
2-up
Swipe
Onion skin
ppocr/modeling/backbones/__init__.py
浏览文件 @
1d7c9f81
...
...
@@ -16,7 +16,7 @@ __all__ = ["build_backbone"]
def
build_backbone
(
config
,
model_type
):
if
model_type
==
"det"
:
if
model_type
==
"det"
or
model_type
==
"table"
:
from
.det_mobilenet_v3
import
MobileNetV3
from
.det_resnet_vd
import
ResNet
from
.det_resnet_vd_sast
import
ResNet_SAST
...
...
@@ -36,10 +36,6 @@ def build_backbone(config, model_type):
elif
model_type
==
"e2e"
:
from
.e2e_resnet_vd_pg
import
ResNet
support_dict
=
[
"ResNet"
]
elif
model_type
==
"table"
:
from
.table_resnet_vd
import
ResNet
from
.table_mobilenet_v3
import
MobileNetV3
support_dict
=
[
"ResNet"
,
"MobileNetV3"
]
else
:
raise
NotImplementedError
...
...
ppocr/modeling/backbones/rec_mobilenet_v3.py
浏览文件 @
1d7c9f81
...
...
@@ -26,8 +26,10 @@ class MobileNetV3(nn.Layer):
scale
=
0.5
,
large_stride
=
None
,
small_stride
=
None
,
disable_se
=
False
,
**
kwargs
):
super
(
MobileNetV3
,
self
).
__init__
()
self
.
disable_se
=
disable_se
if
small_stride
is
None
:
small_stride
=
[
2
,
2
,
2
,
2
]
if
large_stride
is
None
:
...
...
@@ -101,6 +103,7 @@ class MobileNetV3(nn.Layer):
block_list
=
[]
inplanes
=
make_divisible
(
inplanes
*
scale
)
for
(
k
,
exp
,
c
,
se
,
nl
,
s
)
in
cfg
:
se
=
se
and
not
self
.
disable_se
block_list
.
append
(
ResidualUnit
(
in_channels
=
inplanes
,
...
...
ppocr/modeling/backbones/table_mobilenet_v3.py
已删除
100644 → 0
浏览文件 @
3f3b915b
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
__all__
=
[
'MobileNetV3'
]
def
make_divisible
(
v
,
divisor
=
8
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
class
MobileNetV3
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
=
3
,
model_name
=
'large'
,
scale
=
0.5
,
disable_se
=
False
,
**
kwargs
):
"""
the MobilenetV3 backbone network for detection module.
Args:
params(dict): the super parameters for build network
"""
super
(
MobileNetV3
,
self
).
__init__
()
self
.
disable_se
=
disable_se
if
model_name
==
"large"
:
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
False
,
'relu'
,
1
],
[
3
,
64
,
24
,
False
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
1
],
[
5
,
72
,
40
,
True
,
'relu'
,
2
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
3
,
240
,
80
,
False
,
'hardswish'
,
2
],
[
3
,
200
,
80
,
False
,
'hardswish'
,
1
],
[
3
,
184
,
80
,
False
,
'hardswish'
,
1
],
[
3
,
184
,
80
,
False
,
'hardswish'
,
1
],
[
3
,
480
,
112
,
True
,
'hardswish'
,
1
],
[
3
,
672
,
112
,
True
,
'hardswish'
,
1
],
[
5
,
672
,
160
,
True
,
'hardswish'
,
2
],
[
5
,
960
,
160
,
True
,
'hardswish'
,
1
],
[
5
,
960
,
160
,
True
,
'hardswish'
,
1
],
]
cls_ch_squeeze
=
960
elif
model_name
==
"small"
:
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
True
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
2
],
[
3
,
88
,
24
,
False
,
'relu'
,
1
],
[
5
,
96
,
40
,
True
,
'hardswish'
,
2
],
[
5
,
240
,
40
,
True
,
'hardswish'
,
1
],
[
5
,
240
,
40
,
True
,
'hardswish'
,
1
],
[
5
,
120
,
48
,
True
,
'hardswish'
,
1
],
[
5
,
144
,
48
,
True
,
'hardswish'
,
1
],
[
5
,
288
,
96
,
True
,
'hardswish'
,
2
],
[
5
,
576
,
96
,
True
,
'hardswish'
,
1
],
[
5
,
576
,
96
,
True
,
'hardswish'
,
1
],
]
cls_ch_squeeze
=
576
else
:
raise
NotImplementedError
(
"mode["
+
model_name
+
"_model] is not implemented!"
)
supported_scale
=
[
0.35
,
0.5
,
0.75
,
1.0
,
1.25
]
assert
scale
in
supported_scale
,
\
"supported scale are {} but input scale is {}"
.
format
(
supported_scale
,
scale
)
inplanes
=
16
# conv1
self
.
conv
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
make_divisible
(
inplanes
*
scale
),
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
groups
=
1
,
if_act
=
True
,
act
=
'hardswish'
,
name
=
'conv1'
)
self
.
stages
=
[]
self
.
out_channels
=
[]
block_list
=
[]
i
=
0
inplanes
=
make_divisible
(
inplanes
*
scale
)
for
(
k
,
exp
,
c
,
se
,
nl
,
s
)
in
cfg
:
se
=
se
and
not
self
.
disable_se
start_idx
=
2
if
model_name
==
'large'
else
0
if
s
==
2
and
i
>
start_idx
:
self
.
out_channels
.
append
(
inplanes
)
self
.
stages
.
append
(
nn
.
Sequential
(
*
block_list
))
block_list
=
[]
block_list
.
append
(
ResidualUnit
(
in_channels
=
inplanes
,
mid_channels
=
make_divisible
(
scale
*
exp
),
out_channels
=
make_divisible
(
scale
*
c
),
kernel_size
=
k
,
stride
=
s
,
use_se
=
se
,
act
=
nl
,
name
=
"conv"
+
str
(
i
+
2
)))
inplanes
=
make_divisible
(
scale
*
c
)
i
+=
1
block_list
.
append
(
ConvBNLayer
(
in_channels
=
inplanes
,
out_channels
=
make_divisible
(
scale
*
cls_ch_squeeze
),
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
groups
=
1
,
if_act
=
True
,
act
=
'hardswish'
,
name
=
'conv_last'
))
self
.
stages
.
append
(
nn
.
Sequential
(
*
block_list
))
self
.
out_channels
.
append
(
make_divisible
(
scale
*
cls_ch_squeeze
))
for
i
,
stage
in
enumerate
(
self
.
stages
):
self
.
add_sublayer
(
sublayer
=
stage
,
name
=
"stage{}"
.
format
(
i
))
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
out_list
=
[]
for
stage
in
self
.
stages
:
x
=
stage
(
x
)
out_list
.
append
(
x
)
return
out_list
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
padding
,
groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
False
)
self
.
bn
=
nn
.
BatchNorm
(
num_channels
=
out_channels
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
),
moving_mean_name
=
name
+
"_bn_mean"
,
moving_variance_name
=
name
+
"_bn_variance"
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
if
self
.
if_act
:
if
self
.
act
==
"relu"
:
x
=
F
.
relu
(
x
)
elif
self
.
act
==
"hardswish"
:
x
=
F
.
hardswish
(
x
)
else
:
print
(
"The activation function({}) is selected incorrectly."
.
format
(
self
.
act
))
exit
()
return
x
class
ResidualUnit
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
mid_channels
,
out_channels
,
kernel_size
,
stride
,
use_se
,
act
=
None
,
name
=
''
):
super
(
ResidualUnit
,
self
).
__init__
()
self
.
if_shortcut
=
stride
==
1
and
in_channels
==
out_channels
self
.
if_se
=
use_se
self
.
expand_conv
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
mid_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
"_expand"
)
self
.
bottleneck_conv
=
ConvBNLayer
(
in_channels
=
mid_channels
,
out_channels
=
mid_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
int
((
kernel_size
-
1
)
//
2
),
groups
=
mid_channels
,
if_act
=
True
,
act
=
act
,
name
=
name
+
"_depthwise"
)
if
self
.
if_se
:
self
.
mid_se
=
SEModule
(
mid_channels
,
name
=
name
+
"_se"
)
self
.
linear_conv
=
ConvBNLayer
(
in_channels
=
mid_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
act
=
None
,
name
=
name
+
"_linear"
)
def
forward
(
self
,
inputs
):
x
=
self
.
expand_conv
(
inputs
)
x
=
self
.
bottleneck_conv
(
x
)
if
self
.
if_se
:
x
=
self
.
mid_se
(
x
)
x
=
self
.
linear_conv
(
x
)
if
self
.
if_shortcut
:
x
=
paddle
.
add
(
inputs
,
x
)
return
x
class
SEModule
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
reduction
=
4
,
name
=
""
):
super
(
SEModule
,
self
).
__init__
()
self
.
avg_pool
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
conv1
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
in_channels
//
reduction
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
))
self
.
conv2
=
nn
.
Conv2D
(
in_channels
=
in_channels
//
reduction
,
out_channels
=
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
weight_attr
=
ParamAttr
(
name
+
"_2_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_2_offset"
))
def
forward
(
self
,
inputs
):
outputs
=
self
.
avg_pool
(
inputs
)
outputs
=
self
.
conv1
(
outputs
)
outputs
=
F
.
relu
(
outputs
)
outputs
=
self
.
conv2
(
outputs
)
outputs
=
F
.
hardsigmoid
(
outputs
,
slope
=
0.2
,
offset
=
0.5
)
return
inputs
*
outputs
\ No newline at end of file
ppocr/modeling/backbones/table_resnet_vd.py
已删除
100644 → 0
浏览文件 @
3f3b915b
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
__all__
=
[
"ResNet"
]
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
groups
=
1
,
is_vd_mode
=
False
,
act
=
None
,
name
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
nn
.
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
nn
.
BatchNorm
(
out_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
stride
,
shortcut
=
True
,
if_first
=
False
,
name
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
in_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
in_channels
=
out_channels
,
out_channels
=
out_channels
*
4
,
kernel_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels
*
4
,
kernel_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
y
=
F
.
relu
(
y
)
return
y
class
BasicBlock
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
stride
,
shortcut
=
True
,
if_first
=
False
,
name
=
None
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
in_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv1
)
y
=
F
.
relu
(
y
)
return
y
class
ResNet
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
=
3
,
layers
=
50
,
**
kwargs
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
18
,
34
,
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
18
:
depth
=
[
2
,
2
,
2
,
2
]
elif
layers
==
34
or
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
elif
layers
==
200
:
depth
=
[
3
,
12
,
48
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv1_1
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
nn
.
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
stages
=
[]
self
.
out_channels
=
[]
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
block_list
=
[]
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
in_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
out_channels
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
shortcut
=
True
block_list
.
append
(
bottleneck_block
)
self
.
out_channels
.
append
(
num_filters
[
block
]
*
4
)
self
.
stages
.
append
(
nn
.
Sequential
(
*
block_list
))
else
:
for
block
in
range
(
len
(
depth
)):
block_list
=
[]
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
basic_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BasicBlock
(
in_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
],
out_channels
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
shortcut
=
True
block_list
.
append
(
basic_block
)
self
.
out_channels
.
append
(
num_filters
[
block
])
self
.
stages
.
append
(
nn
.
Sequential
(
*
block_list
))
def
forward
(
self
,
inputs
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
out
=
[]
for
block
in
self
.
stages
:
y
=
block
(
y
)
out
.
append
(
y
)
return
out
ppocr/modeling/transforms/tps_spatial_transformer.py
浏览文件 @
1d7c9f81
...
...
@@ -53,7 +53,7 @@ def compute_partial_repr(input_points, control_points):
1
]
repr_matrix
=
0.5
*
pairwise_dist
*
paddle
.
log
(
pairwise_dist
)
# fix numerical error for 0 * log(0), substitute all nan with 0
mask
=
repr_matrix
!=
repr_matrix
mask
=
np
.
array
(
repr_matrix
!=
repr_matrix
)
repr_matrix
[
mask
]
=
0
return
repr_matrix
...
...
ppocr/postprocess/east_postprocess.py
浏览文件 @
1d7c9f81
...
...
@@ -20,7 +20,6 @@ import numpy as np
from
.locality_aware_nms
import
nms_locality
import
cv2
import
paddle
import
lanms
import
os
import
sys
...
...
@@ -61,6 +60,7 @@ class EASTPostProcess(object):
"""
restore text boxes from score map and geo map
"""
score_map
=
score_map
[
0
]
geo_map
=
np
.
swapaxes
(
geo_map
,
1
,
0
)
geo_map
=
np
.
swapaxes
(
geo_map
,
1
,
2
)
...
...
@@ -76,8 +76,15 @@ class EASTPostProcess(object):
boxes
=
np
.
zeros
((
text_box_restored
.
shape
[
0
],
9
),
dtype
=
np
.
float32
)
boxes
[:,
:
8
]
=
text_box_restored
.
reshape
((
-
1
,
8
))
boxes
[:,
8
]
=
score_map
[
xy_text
[:,
0
],
xy_text
[:,
1
]]
boxes
=
lanms
.
merge_quadrangle_n9
(
boxes
,
nms_thresh
)
# boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
try
:
import
lanms
boxes
=
lanms
.
merge_quadrangle_n9
(
boxes
,
nms_thresh
)
except
:
print
(
'you should install lanms by pip3 install lanms-nova to speed up nms_locality'
)
boxes
=
nms_locality
(
boxes
.
astype
(
np
.
float64
),
nms_thresh
)
if
boxes
.
shape
[
0
]
==
0
:
return
[]
# Here we filter some low score boxes by the average score map,
...
...
ppocr/utils/save_load.py
浏览文件 @
1d7c9f81
...
...
@@ -67,6 +67,7 @@ def load_model(config, model, optimizer=None):
if
key
not
in
params
:
logger
.
warning
(
"{} not in loaded params {} !"
.
format
(
key
,
params
.
keys
()))
continue
pre_value
=
params
[
key
]
if
list
(
value
.
shape
)
==
list
(
pre_value
.
shape
):
new_state_dict
[
key
]
=
pre_value
...
...
@@ -76,9 +77,14 @@ def load_model(config, model, optimizer=None):
format
(
key
,
value
.
shape
,
pre_value
.
shape
))
model
.
set_state_dict
(
new_state_dict
)
optim_dict
=
paddle
.
load
(
checkpoints
+
'.pdopt'
)
if
optimizer
is
not
None
:
optimizer
.
set_state_dict
(
optim_dict
)
if
os
.
path
.
exists
(
checkpoints
+
'.pdopt'
):
optim_dict
=
paddle
.
load
(
checkpoints
+
'.pdopt'
)
optimizer
.
set_state_dict
(
optim_dict
)
else
:
logger
.
warning
(
"{}.pdopt is not exists, params of optimizer is not loaded"
.
format
(
checkpoints
))
if
os
.
path
.
exists
(
checkpoints
+
'.states'
):
with
open
(
checkpoints
+
'.states'
,
'rb'
)
as
f
:
...
...
requirements.txt
浏览文件 @
1d7c9f81
...
...
@@ -12,5 +12,4 @@ cython
lxml
premailer
openpyxl
fasttext
==0.9.1
lanms-nova
\ No newline at end of file
fasttext
==0.9.1
\ No newline at end of file
test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
浏览文件 @
1d7c9f81
===========================ch_
ppocr_mobile_v2.0
===========================
===========================ch_
PP-OCRv2
===========================
model_name:ch_PP-OCRv2
python:python3.7
null:null
null:null
infer_model:./inference/ch_PP-OCRv2_det_infer/
infer_export:null
infer_quant:False
...
...
@@ -12,7 +10,7 @@ inference:tools/infer/predict_system.py
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32
|fp16
--precision:fp32
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--rec_model_dir:./inference/ch_PP-OCRv2_rec_infer/
...
...
test_tipc/configs/ch_ppocr_mobile_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
浏览文件 @
1d7c9f81
===========================ch_ppocr_mobile_v2.0===========================
model_name:ch_ppocr_mobile_v2.0
python:python3.7
null:null
null:null
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:null
infer_quant:False
...
...
@@ -12,10 +10,10 @@ inference:tools/infer/predict_system.py
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32
|fp16
--precision:fp32
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
--benchmark:True
null:null
null:null
test_tipc/configs/ch_ppocr_mobile_v2.0_rec/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c configs/rec/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c configs/rec/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
500
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_chinese_lite_v2.0
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
ppocr/utils/ppocr_keys_v1.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Cosine
learning_rate
:
0.001
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
small
small_stride
:
[
1
,
2
,
2
,
2
]
disable_se
:
True
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
48
Head
:
name
:
CTCHead
fc_decay
:
0.00001
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
RecAug
:
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_FPGM
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/ic15_data/test/word_1.png
null:null
##
trainer:fpgm_train
norm_train:null
pact_train:null
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./pretrain_models/ch_ppocr_mobile_v2.0_rec_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:null
quant_export:null
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:null
infer_export:null
infer_quant:False
inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
null:null
--benchmark:True
null:null
\ No newline at end of file
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================kl_quant_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_KL
python:python3.7
Global.pretrained_model:null
Global.save_inference_dir:null
infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/
infer_export:deploy/slim/quantization/quant_kl.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_rec.py
--use_gpu:False|True
--enable_mkldnn:True
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/rec_inference
null:null
--benchmark:True
null:null
null:null
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_KL/rec_chinese_lite_train_v2.0.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
500
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_chinese_lite_v2.0
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
ppocr/utils/ppocr_keys_v1.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Cosine
learning_rate
:
0.001
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
small
small_stride
:
[
1
,
2
,
2
,
2
]
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
48
Head
:
name
:
CTCHead
fc_decay
:
0.00001
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
RecAug
:
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
500
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_chinese_lite_v2.0
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
ppocr/utils/ppocr_keys_v1.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Cosine
learning_rate
:
0.001
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
small
small_stride
:
[
1
,
2
,
2
,
2
]
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
48
Head
:
name
:
CTCHead
fc_decay
:
0.00001
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
RecAug
:
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_PACT
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.checkpoints:null
train_model_name:latest
train_infer_img_dir:./train_data/ic15_data/test/word_1.png
null:null
##
trainer:pact_train
norm_train:null
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.checkpoints:
norm_export:null
quant_export:deploy/slim/quantization/export_model.py -ctest_tipc/configs/ch_ppocr_mobile_v2.0_rec_PACT/rec_chinese_lite_train_v2.0.yml -o
fpgm_export:null
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:null
infer_export:null
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ppocr_keys_v1.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
\ No newline at end of file
test_tipc/configs/ch_ppocr_server_v2.0/model_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt
浏览文件 @
1d7c9f81
===========================ch_ppocr_
mobile
_v2.0===========================
===========================ch_ppocr_
server
_v2.0===========================
model_name:ch_ppocr_server_v2.0
python:python3.7
null:null
null:null
infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
infer_export:null
infer_quant:True
...
...
@@ -12,7 +10,7 @@ inference:tools/infer/predict_system.py
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False
--precision:fp32
|fp16
--precision:fp32
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--rec_model_dir:./inference/ch_ppocr_server_v2.0_rec_infer/
...
...
test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_
r34_
train.yml
→
test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml
浏览文件 @
1d7c9f81
文件已移动
test_tipc/configs/ch_ppocr_server_v2.0_rec/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:ch_ppocr_server_v2.0_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
600
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/det_mv3_pse/
save_epoch_step
:
600
# evaluation is run every 63 iterations
eval_batch_step
:
[
0
,
1000
]
cal_metric_during_train
:
False
pretrained_model
:
./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints
:
#./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_en/img_10.jpg
save_res_path
:
./output/det_pse/predicts_pse.txt
Architecture
:
model_type
:
det
algorithm
:
PSE
Transform
:
null
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
FPN
out_channels
:
96
Head
:
name
:
PSEHead
hidden_dim
:
96
out_channels
:
7
Loss
:
name
:
PSELoss
alpha
:
0.7
ohem_ratio
:
3
kernel_sample_mask
:
pred
reduction
:
none
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Step
learning_rate
:
0.001
step_size
:
200
gamma
:
0.1
regularizer
:
name
:
'
L2'
factor
:
0.0005
PostProcess
:
name
:
PSEPostProcess
thresh
:
0
box_thresh
:
0.85
min_area
:
16
box_type
:
box
# 'box' or 'poly'
scale
:
1
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
ColorJitter
:
brightness
:
0.12549019607843137
saturation
:
0.5
-
IaaAugment
:
augmenter_args
:
-
{
'
type'
:
Resize
,
'
args'
:
{
'
size'
:
[
0.5
,
3
]
}
}
-
{
'
type'
:
Fliplr
,
'
args'
:
{
'
p'
:
0.5
}
}
-
{
'
type'
:
Affine
,
'
args'
:
{
'
rotate'
:
[
-10
,
10
]
}
}
-
MakePseGt
:
kernel_num
:
7
min_shrink_ratio
:
0.4
size
:
640
-
RandomCropImgMask
:
size
:
[
640
,
640
]
main_key
:
gt_text
crop_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
# the order of the dataloader list
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
16
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
limit_side_len
:
736
limit_type
:
min
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
8
\ No newline at end of file
test_tipc/configs/det_mv3_pse_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:det_mv3_pse_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_mv3_pse/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_mv3_pse_v2.0/det_mv3_pse.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:PSE
test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
浏览文件 @
1d7c9f81
...
...
@@ -34,7 +34,7 @@ distill_export:null
export1:null
export2:null
##
train_model:./inference/det_
mv3
_east/best_accuracy
train_model:./inference/det_
r50_vd
_east/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
...
...
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
600
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/det_r50_vd_pse/
save_epoch_step
:
600
# evaluation is run every 125 iterations
eval_batch_step
:
[
0
,
1000
]
cal_metric_during_train
:
False
pretrained_model
:
checkpoints
:
#./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_en/img_10.jpg
save_res_path
:
./output/det_pse/predicts_pse.txt
Architecture
:
model_type
:
det
algorithm
:
PSE
Transform
:
Backbone
:
name
:
ResNet
layers
:
50
Neck
:
name
:
FPN
out_channels
:
256
Head
:
name
:
PSEHead
hidden_dim
:
256
out_channels
:
7
Loss
:
name
:
PSELoss
alpha
:
0.7
ohem_ratio
:
3
kernel_sample_mask
:
pred
reduction
:
none
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Step
learning_rate
:
0.0001
step_size
:
200
gamma
:
0.1
regularizer
:
name
:
'
L2'
factor
:
0.0005
PostProcess
:
name
:
PSEPostProcess
thresh
:
0
box_thresh
:
0.85
min_area
:
16
box_type
:
box
# 'box' or 'poly'
scale
:
1
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
ColorJitter
:
brightness
:
0.12549019607843137
saturation
:
0.5
-
IaaAugment
:
augmenter_args
:
-
{
'
type'
:
Resize
,
'
args'
:
{
'
size'
:
[
0.5
,
3
]
}
}
-
{
'
type'
:
Fliplr
,
'
args'
:
{
'
p'
:
0.5
}
}
-
{
'
type'
:
Affine
,
'
args'
:
{
'
rotate'
:
[
-10
,
10
]
}
}
-
MakePseGt
:
kernel_num
:
7
min_shrink_ratio
:
0.4
size
:
640
-
RandomCropImgMask
:
size
:
[
640
,
640
]
main_key
:
gt_text
crop_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
# the order of the dataloader list
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
8
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
limit_side_len
:
736
limit_type
:
min
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
8
\ No newline at end of file
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:det_r50_vd_pse_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_r50_vd_pse/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:PSE
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
21
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/nrtr/
save_epoch_step
:
1
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
ppocr/utils/EN_symbol_dict.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_nrtr.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.99
clip_norm
:
5.0
lr
:
name
:
Cosine
learning_rate
:
0.0005
warmup_epoch
:
2
regularizer
:
name
:
'
L2'
factor
:
0.
Architecture
:
model_type
:
rec
algorithm
:
NRTR
in_channels
:
1
Transform
:
Backbone
:
name
:
MTB
cnn_num
:
2
Head
:
name
:
Transformer
d_model
:
512
num_encoder_layers
:
6
beam_size
:
-1
# When Beam size is greater than 0, it means to use beam search when evaluation.
Loss
:
name
:
NRTRLoss
smoothing
:
True
PostProcess
:
name
:
NRTRLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
NRTRRecResizeImg
:
image_shape
:
[
100
,
32
]
resize_type
:
PIL
# PIL or OpenCV
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
512
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
NRTRRecResizeImg
:
image_shape
:
[
100
,
32
]
resize_type
:
PIL
# PIL or OpenCV
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
use_shared_memory
:
False
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_mtb_nrtr
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_none_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_none_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_mv3_none_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_none_none_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_none_none_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
Rosetta
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
reshape
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_mv3_none_none_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/rec_mv3_tps_bilstm_att/
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_tps_bilstm_att.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
RARE
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
small
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
AttentionHead
hidden_size
:
96
Loss
:
name
:
AttentionLoss
PostProcess
:
name
:
AttnLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_mv3_tps_bilstm_att_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_tps_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_tps_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
STARNet
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
small
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_mv3_tps_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r31_sar/rec_r31_sar.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
5
log_smooth_window
:
20
print_batch_step
:
20
save_model_dir
:
./sar_rec
save_epoch_step
:
1
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
# for data or label process
character_dict_path
:
ppocr/utils/dict90.txt
max_text_length
:
30
infer_mode
:
False
use_space_char
:
False
rm_symbol
:
True
save_res_path
:
./output/rec/predicts_sar.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Piecewise
decay_epochs
:
[
3
,
4
]
values
:
[
0.001
,
0.0001
,
0.00001
]
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
SAR
Transform
:
Backbone
:
name
:
ResNet31
Head
:
name
:
SARHead
Loss
:
name
:
SARLoss
PostProcess
:
name
:
SARLabelDecode
Metric
:
name
:
RecMetric
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SARLabelEncode
:
# Class handling label
-
SARRecResizeImg
:
image_shape
:
[
3
,
48
,
48
,
160
]
# h:48 w:[48,160]
width_downsample_ratio
:
0.25
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
valid_ratio'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
64
drop_last
:
True
num_workers
:
8
use_shared_memory
:
False
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SARLabelEncode
:
# Class handling label
-
SARRecResizeImg
:
image_shape
:
[
3
,
48
,
48
,
160
]
width_downsample_ratio
:
0.25
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
valid_ratio'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
64
num_workers
:
4
use_shared_memory
:
False
test_tipc/configs/rec_r31_sar/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_r31_sar
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/dict90.txt --rec_image_shape="3,48,48,160" --rec_algorithm="SAR"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/r34_vd_none_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_r34_vd_none_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
256
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_r34_vd_none_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/r34_vd_none_none_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_r34_vd_none_none_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
Rosetta
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
reshape
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_r34_vd_none_none_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
400
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/b3_rare_r34_none_gru/
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_b3_rare_r34_none_gru.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0.00000
Architecture
:
model_type
:
rec
algorithm
:
RARE
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
large
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
256
#96
Head
:
name
:
AttentionHead
# AttentionHead
hidden_size
:
256
#
l2_decay
:
0.00001
Loss
:
name
:
AttentionLoss
PostProcess
:
name
:
AttnLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_r34_vd_tps_bilstm_att_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
true
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/r34_vd_tps_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_r34_vd_tps_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
STARNet
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
large
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
256
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_r34_vd_tps_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml
0 → 100644
浏览文件 @
1d7c9f81
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
5
save_model_dir
:
./output/rec/srn_new
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
5000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
num_heads
:
8
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_srn.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
clip_norm
:
10.0
lr
:
learning_rate
:
0.0001
Architecture
:
model_type
:
rec
algorithm
:
SRN
in_channels
:
1
Transform
:
Backbone
:
name
:
ResNetFPN
Head
:
name
:
SRNHead
max_text_length
:
25
num_heads
:
8
num_encoder_TUs
:
2
num_decoder_TUs
:
4
hidden_dims
:
512
Loss
:
name
:
SRNLoss
PostProcess
:
name
:
SRNLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SRNLabelEncode
:
# Class handling label
-
SRNRecResizeImg
:
image_shape
:
[
1
,
64
,
256
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
,
'
encoder_word_pos'
,
'
gsrm_word_pos'
,
'
gsrm_slf_attn_bias1'
,
'
gsrm_slf_attn_bias2'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
64
drop_last
:
False
num_workers
:
4
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SRNLabelEncode
:
# Class handling label
-
SRNRecResizeImg
:
image_shape
:
[
1
,
64
,
256
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
,
'
encoder_word_pos'
,
'
gsrm_word_pos'
,
'
gsrm_slf_attn_bias1'
,
'
gsrm_slf_attn_bias2'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
32
num_workers
:
4
test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt
0 → 100644
浏览文件 @
1d7c9f81
===========================train_params===========================
model_name:rec_r50_fpn_vd_none_srn
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="1,64,256" --rec_algorithm="SRN" --use_space_char=False
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/docs/jeston_test_train_inference_python.md
浏览文件 @
1d7c9f81
# Jeston端基础训练预测功能测试
Jeston端基础训练预测功能测试的主程序为
`test_
train_inference_python
.sh`
,由于Jeston端CPU较差,Jeston只需要测试TIPC关于GPU和TensorRT预测推理的部分即可。
Jeston端基础训练预测功能测试的主程序为
`test_
inference_inference
.sh`
,由于Jeston端CPU较差,Jeston只需要测试TIPC关于GPU和TensorRT预测推理的部分即可。
## 1. 测试结论汇总
...
...
@@ -40,21 +40,21 @@ Jeston端基础训练预测功能测试的主程序为`test_train_inference_pyth
### 2.2 功能测试
先运行
`prepare.sh`
准备数据和模型,然后运行
`test_
train_inference_python
.sh`
进行测试,最终在
```test_tipc/output```
目录下生成
`python_infer_*.log`
格式的日志文件。
先运行
`prepare.sh`
准备数据和模型,然后运行
`test_
inference_inference
.sh`
进行测试,最终在
```test_tipc/output```
目录下生成
`python_infer_*.log`
格式的日志文件。
`test_
train_inference_python.sh`
包含5种
[
运行模式
](
./test_train_inference_python.md
)
,在Jeston端,仅需要测试预测推理的模式即可:
`test_
inference_inference.sh`
仅有一个模式
`whole_infer`
,在Jeston端,仅需要测试预测推理的模式即可:
```
- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```
shell
bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer'
# 用法1:
bash test_tipc/test_inference_
jeston
.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer'
bash test_tipc/test_inference_
inference
.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_inference_jeston.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer' '1'
```
运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如`
lite_train_lit
e_infer`模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如`
whol
e_infer`模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
```
test_tipc/output/
|- results_python.log # 运行指令状态的日志
...
...
test_tipc/prepare.sh
浏览文件 @
1d7c9f81
...
...
@@ -61,6 +61,10 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar
--no-check-certificate
cd
./inference/
&&
tar
xf det_r50_vd_db_v2.0_train.tar
&&
cd
../
fi
if
[
${
model_name
}
==
"ch_ppocr_mobile_v2.0_rec_FPGM"
]
;
then
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar
--no-check-certificate
cd
./pretrain_models/
&&
tar
xf ch_ppocr_mobile_v2.0_rec_train.tar
&&
cd
../
fi
elif
[
${
MODE
}
=
"whole_train_whole_infer"
]
;
then
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
--no-check-certificate
...
...
@@ -120,14 +124,12 @@ elif [ ${MODE} = "whole_infer" ];then
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf ch_ppocr_server_v2.0_det_infer.tar
&&
tar
xf ch_ppocr_server_v2.0_rec_infer.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
elif
[
${
model_name
}
=
"ocr_rec"
]
;
then
rm
-rf
./train_data/ic15_data
elif
[
${
model_name
}
=
"ch_ppocr_mobile_v2.0_rec"
]
;
then
eval_model_name
=
"ch_ppocr_mobile_v2.0_rec_infer"
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf rec_inference.tar
&&
cd
../
elif
[
${
model_name
}
=
"ocr_server_rec"
]
;
then
rm
-rf
./train_data/ic15_data
elif
[
${
model_name
}
=
"ch_ppocr_server_v2.0_rec"
]
;
then
eval_model_name
=
"ch_ppocr_server_v2.0_rec_infer"
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
--no-check-certificate
...
...
@@ -139,11 +141,6 @@ elif [ ${MODE} = "whole_infer" ];then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
fi
if
[
${
model_name
}
=
"ch_PPOCRv2_det"
]
;
then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
--no-check-certificate
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf e2e_server_pgnetA_infer.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
fi
if
[
${
model_name
}
==
"en_server_pgnetA"
]
;
then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar
--no-check-certificate
cd
./inference
&&
tar
xf en_server_pgnetA.tar
&&
cd
../
...
...
@@ -176,6 +173,13 @@ if [ ${MODE} = "klquant_whole_infer" ]; then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
fi
if
[
${
model_name
}
=
"ch_ppocr_mobile_v2.0_rec_KL"
]
;
then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
--no-check-certificate
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
--no-check-certificate
cd
./train_data/
&&
tar
xf ic15_data.tar
&&
cd
../
cd
./inference
&&
tar
xf ch_ppocr_mobile_v2.0_rec_infer.tar
&&
tar
xf rec_inference.tar
&&
cd
../
fi
fi
if
[
${
MODE
}
=
"cpp_infer"
]
;
then
...
...
@@ -183,7 +187,7 @@ if [ ${MODE} = "cpp_infer" ];then
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf ch_ppocr_mobile_v2.0_det_infer.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
elif
[
${
model_name
}
=
"
ocr
_rec"
]
;
then
elif
[
${
model_name
}
=
"
ch_ppocr_mobile_v2.0
_rec"
]
;
then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf ch_ppocr_mobile_v2.0_rec_infer.tar
&&
tar
xf rec_inference.tar
&&
cd
../
...
...
test_tipc/test_inference_jeston.sh
已删除
100644 → 0
浏览文件 @
3f3b915b
#!/bin/bash
source
test_tipc/common_func.sh
source
test_tipc/test_train_inference_python.sh
FILENAME
=
$1
# MODE be one of ['whole_infer']
MODE
=
$2
dataline
=
$(
awk
'NR==1, NR==17{print}'
$FILENAME
)
# parser params
IFS
=
$'
\n
'
lines
=(
${
dataline
}
)
model_name
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
python
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
infer_model_dir_list
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
infer_export_list
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
infer_is_quant
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
# parser inference
inference_py
=
$(
func_parser_value
"
${
lines
[6]
}
"
)
use_gpu_key
=
$(
func_parser_key
"
${
lines
[7]
}
"
)
use_gpu_list
=
$(
func_parser_value
"
${
lines
[7]
}
"
)
use_mkldnn_key
=
$(
func_parser_key
"
${
lines
[8]
}
"
)
use_mkldnn_list
=
$(
func_parser_value
"
${
lines
[8]
}
"
)
cpu_threads_key
=
$(
func_parser_key
"
${
lines
[9]
}
"
)
cpu_threads_list
=
$(
func_parser_value
"
${
lines
[9]
}
"
)
batch_size_key
=
$(
func_parser_key
"
${
lines
[10]
}
"
)
batch_size_list
=
$(
func_parser_value
"
${
lines
[10]
}
"
)
use_trt_key
=
$(
func_parser_key
"
${
lines
[11]
}
"
)
use_trt_list
=
$(
func_parser_value
"
${
lines
[11]
}
"
)
precision_key
=
$(
func_parser_key
"
${
lines
[12]
}
"
)
precision_list
=
$(
func_parser_value
"
${
lines
[12]
}
"
)
infer_model_key
=
$(
func_parser_key
"
${
lines
[13]
}
"
)
image_dir_key
=
$(
func_parser_key
"
${
lines
[14]
}
"
)
infer_img_dir
=
$(
func_parser_value
"
${
lines
[14]
}
"
)
save_log_key
=
$(
func_parser_key
"
${
lines
[15]
}
"
)
benchmark_key
=
$(
func_parser_key
"
${
lines
[16]
}
"
)
benchmark_value
=
$(
func_parser_value
"
${
lines
[16]
}
"
)
infer_key1
=
$(
func_parser_key
"
${
lines
[17]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[17]
}
"
)
LOG_PATH
=
"./test_tipc/output"
mkdir
-p
${
LOG_PATH
}
status_log
=
"
${
LOG_PATH
}
/results_python.log"
if
[
${
MODE
}
=
"whole_infer"
]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
IFS
=
"|"
infer_run_exports
=(
${
infer_export_list
}
)
infer_quant_flag
=(
${
infer_is_quant
}
)
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
# run export
if
[
${
infer_run_exports
[Count]
}
!=
"null"
]
;
then
save_infer_dir
=
$(
dirname
$infer_model
)
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
infer_model
}
"
)
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_dir
}
"
)
export_cmd
=
"
${
python
}
${
infer_run_exports
[Count]
}
${
set_export_weight
}
${
set_save_infer_key
}
"
echo
${
infer_run_exports
[Count]
}
echo
$export_cmd
eval
$export_cmd
status_export
=
$?
status_check
$status_export
"
${
export_cmd
}
"
"
${
status_log
}
"
else
save_infer_dir
=
${
infer_model
}
fi
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
is_quant
=
"True"
fi
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
save_infer_dir
}
"
"
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
fi
test_tipc/test_inference_python.sh
浏览文件 @
1d7c9f81
...
...
@@ -6,7 +6,7 @@ FILENAME=$1
# MODE be one of ['whole_infer']
MODE
=
$2
dataline
=
$(
awk
'NR==1, NR==
17
{print}'
$FILENAME
)
dataline
=
$(
awk
'NR==1, NR==
20
{print}'
$FILENAME
)
# parser params
IFS
=
$'
\n
'
...
...
@@ -15,7 +15,6 @@ lines=(${dataline})
model_name
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
python
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
infer_model_dir_list
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
infer_export_list
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
infer_is_quant
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
...
...
@@ -43,16 +42,13 @@ benchmark_value=$(func_parser_value "${lines[16]}")
infer_key1
=
$(
func_parser_key
"
${
lines
[17]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[17]
}
"
)
echo
"DEBUG"
echo
"
${
lines
[16]
}
"
echo
"line17"
${
lines
[17]
}
LOG_PATH
=
"./test_tipc/output"
mkdir
-p
${
LOG_PATH
}
status_log
=
"
${
LOG_PATH
}
/results_python.log"
function
func_inference
(){
IFS
=
'|'
_python
=
$1
...
...
@@ -61,7 +57,6 @@ function func_inference(){
_log_path
=
$4
_img_dir
=
$5
_flag_quant
=
$6
echo
"FUCNTION "
# inference
for
use_gpu
in
${
use_gpu_list
[*]
}
;
do
if
[
${
use_gpu
}
=
"False"
]
||
[
${
use_gpu
}
=
"cpu"
]
;
then
...
...
@@ -89,8 +84,6 @@ function func_inference(){
set_infer_params0
=
$(
func_set_params
"
${
rec_model_key
}
"
"
${
rec_model_value
}
"
)
set_infer_params1
=
$(
func_set_params
"
${
infer_key1
}
"
"
${
infer_value1
}
"
)
command
=
"
${
_python
}
${
_script
}
${
use_gpu_key
}
=
${
use_gpu
}
${
use_mkldnn_key
}
=
${
use_mkldnn
}
${
set_cpu_threads
}
${
set_model_dir
}
${
set_batchsize
}
${
set_infer_params0
}
${
set_infer_data
}
${
set_benchmark
}
${
set_precision
}
${
set_infer_params1
}
>
${
_save_log_path
}
2>&1 "
echo
"before cpu command"
echo
$command
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
eval
"cat
${
_save_log_path
}
"
...
...
@@ -122,7 +115,6 @@ function func_inference(){
set_infer_params0
=
$(
func_set_params
"
${
save_log_key
}
"
"
${
save_log_value
}
"
)
set_infer_params1
=
$(
func_set_params
"
${
infer_key1
}
"
"
${
infer_value1
}
"
)
command
=
"
${
_python
}
${
_script
}
${
use_gpu_key
}
=
${
use_gpu
}
${
set_tensorrt
}
${
set_precision
}
${
set_model_dir
}
${
set_batchsize
}
${
set_infer_data
}
${
set_benchmark
}
${
set_infer_params1
}
${
set_infer_params0
}
>
${
_save_log_path
}
2>&1 "
echo
"before gpu command"
eval
$command
last_status
=
${
PIPESTATUS
[0]
}
eval
"cat
${
_save_log_path
}
"
...
...
@@ -150,9 +142,7 @@ if [ ${MODE} = "whole_infer" ]; then
IFS
=
"|"
infer_run_exports
=(
${
infer_export_list
}
)
infer_quant_flag
=(
${
infer_is_quant
}
)
echo
"DEBUG2"
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
echo
"DEBUG#"
# run export
if
[
${
infer_run_exports
[Count]
}
!=
"null"
]
;
then
save_infer_dir
=
$(
dirname
$infer_model
)
...
...
@@ -160,14 +150,12 @@ if [ ${MODE} = "whole_infer" ]; then
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_dir
}
"
)
export_cmd
=
"
${
python
}
${
infer_run_exports
[Count]
}
${
set_export_weight
}
${
set_save_infer_key
}
"
echo
${
infer_run_exports
[Count]
}
echo
$export_cmd
eval
$export_cmd
status_export
=
$?
status_check
$status_export
"
${
export_cmd
}
"
"
${
status_log
}
"
else
save_infer_dir
=
${
infer_model
}
fi
echo
"FUCK@"
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
...
...
test_tipc/test_train_inference_python.sh
浏览文件 @
1d7c9f81
...
...
@@ -89,7 +89,7 @@ infer_key1=$(func_parser_key "${lines[50]}")
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
# parser klquant_infer
if
[
${
MODE
}
=
"klquant_whole_infer"
]
||
[
${
MODE
}
=
"system_infer"
]
;
then
if
[
${
MODE
}
=
"klquant_whole_infer"
]
;
then
dataline
=
$(
awk
'NR==1, NR==17{print}'
$FILENAME
)
lines
=(
${
dataline
}
)
model_name
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
...
...
@@ -210,7 +210,7 @@ function func_inference(){
done
}
if
[
${
MODE
}
=
"whole_infer"
]
||
[
${
MODE
}
=
"klquant_whole_infer"
]
||
[
${
MODE
}
=
"system_infer"
]
;
then
if
[
${
MODE
}
=
"whole_infer"
]
||
[
${
MODE
}
=
"klquant_whole_infer"
]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
...
...
@@ -231,7 +231,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ] || [ ${MOD
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_dir
}
"
)
export_cmd
=
"
${
python
}
${
infer_run_exports
[Count]
}
${
set_export_weight
}
${
set_save_infer_key
}
"
echo
${
infer_run_exports
[Count]
}
echo
$export_cmd
echo
$export_cmd
eval
$export_cmd
status_export
=
$?
status_check
$status_export
"
${
export_cmd
}
"
"
${
status_log
}
"
...
...
@@ -364,7 +364,7 @@ else
#run inference
eval
$env
save_infer_path
=
"
${
save_log
}
"
if
[
${
inference_dir
}
!=
"null"
]
&&
[
${
inference_dir
}
!=
'##'
]
;
then
if
[
[
${
inference_dir
}
!=
"null"
]]
&&
[[
${
inference_dir
}
!=
'##'
]
]
;
then
infer_model_dir
=
"
${
save_infer_path
}
/
${
inference_dir
}
"
else
infer_model_dir
=
${
save_infer_path
}
...
...
tools/infer/predict_rec.py
浏览文件 @
1d7c9f81
...
...
@@ -91,7 +91,7 @@ class TextRecognizer(object):
time_keys
=
[
'preprocess_time'
,
'inference_time'
,
'postprocess_time'
],
warmup
=
2
,
warmup
=
0
,
logger
=
logger
)
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
...
...
tools/infer/utility.py
浏览文件 @
1d7c9f81
...
...
@@ -211,7 +211,7 @@ def create_predictor(args, mode, logger):
"nearest_interp_v2_0.tmp_0"
:
[
1
,
256
,
2
,
2
]
}
max_input_shape
=
{
"x"
:
[
1
,
3
,
1
280
,
1280
],
"x"
:
[
1
,
3
,
1
536
,
1536
],
"conv2d_92.tmp_0"
:
[
1
,
120
,
400
,
400
],
"conv2d_91.tmp_0"
:
[
1
,
24
,
200
,
200
],
"conv2d_59.tmp_0"
:
[
1
,
96
,
400
,
400
],
...
...
@@ -261,7 +261,7 @@ def create_predictor(args, mode, logger):
opt_input_shape
.
update
(
opt_pact_shape
)
elif
mode
==
"rec"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
32
,
10
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
1
024
]}
max_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
1
536
]}
opt_input_shape
=
{
"x"
:
[
args
.
rec_batch_num
,
3
,
32
,
320
]}
elif
mode
==
"cls"
:
min_input_shape
=
{
"x"
:
[
1
,
3
,
48
,
10
]}
...
...
tools/infer_det.py
浏览文件 @
1d7c9f81
...
...
@@ -53,6 +53,7 @@ def draw_det_res(dt_boxes, config, img, img_name, save_path):
logger
.
info
(
"The detected Image saved in {}"
.
format
(
save_path
))
@
paddle
.
no_grad
()
def
main
():
global_config
=
config
[
'Global'
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录