Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
0ec11a29
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0ec11a29
编写于
12月 21, 2020
作者:
Z
zhoujun
提交者:
GitHub
12月 21, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1540 from WenmuZhou/tree_doc
update py inference to 2.0 and delete fluid
上级
2a789770
3a0090dc
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
47 addition
and
67 deletion
+47
-67
ppocr/losses/det_sast_loss.py
ppocr/losses/det_sast_loss.py
+22
-22
tools/infer/predict_cls.py
tools/infer/predict_cls.py
+5
-10
tools/infer/predict_det.py
tools/infer/predict_det.py
+5
-9
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+4
-10
tools/infer/utility.py
tools/infer/utility.py
+10
-15
tools/program.py
tools/program.py
+1
-1
未找到文件。
ppocr/losses/det_sast_loss.py
浏览文件 @
0ec11a29
...
@@ -19,7 +19,6 @@ from __future__ import print_function
...
@@ -19,7 +19,6 @@ from __future__ import print_function
import
paddle
import
paddle
from
paddle
import
nn
from
paddle
import
nn
from
.det_basic_loss
import
DiceLoss
from
.det_basic_loss
import
DiceLoss
import
paddle.fluid
as
fluid
import
numpy
as
np
import
numpy
as
np
...
@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
...
@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
"""
"""
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
eps
=
1e-6
,
**
kwargs
):
eps
=
1e-6
,
**
kwargs
):
super
(
SASTLoss
,
self
).
__init__
()
super
(
SASTLoss
,
self
).
__init__
()
self
.
dice_loss
=
DiceLoss
(
eps
=
eps
)
self
.
dice_loss
=
DiceLoss
(
eps
=
eps
)
...
@@ -39,7 +36,7 @@ class SASTLoss(nn.Layer):
...
@@ -39,7 +36,7 @@ class SASTLoss(nn.Layer):
tcl_mask: N x 128 x 1
tcl_mask: N x 128 x 1
tcl_label: N x X list or LoDTensor
tcl_label: N x X list or LoDTensor
"""
"""
f_score
=
predicts
[
'f_score'
]
f_score
=
predicts
[
'f_score'
]
f_border
=
predicts
[
'f_border'
]
f_border
=
predicts
[
'f_border'
]
f_tvo
=
predicts
[
'f_tvo'
]
f_tvo
=
predicts
[
'f_tvo'
]
...
@@ -53,15 +50,17 @@ class SASTLoss(nn.Layer):
...
@@ -53,15 +50,17 @@ class SASTLoss(nn.Layer):
score_loss
=
1.0
-
2
*
intersection
/
(
union
+
1e-5
)
score_loss
=
1.0
-
2
*
intersection
/
(
union
+
1e-5
)
#border loss
#border loss
l_border_split
,
l_border_norm
=
paddle
.
split
(
l_border
,
num_or_sections
=
[
4
,
1
],
axis
=
1
)
l_border_split
,
l_border_norm
=
paddle
.
split
(
l_border
,
num_or_sections
=
[
4
,
1
],
axis
=
1
)
f_border_split
=
f_border
f_border_split
=
f_border
border_ex_shape
=
l_border_norm
.
shape
*
np
.
array
([
1
,
4
,
1
,
1
])
border_ex_shape
=
l_border_norm
.
shape
*
np
.
array
([
1
,
4
,
1
,
1
])
l_border_norm_split
=
paddle
.
expand
(
x
=
l_border_norm
,
shape
=
border_ex_shape
)
l_border_norm_split
=
paddle
.
expand
(
l_border_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
border_ex_shape
)
x
=
l_border_norm
,
shape
=
border_ex_shape
)
l_border_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
border_ex_shape
)
l_border_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
border_ex_shape
)
l_border_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
border_ex_shape
)
border_diff
=
l_border_split
-
f_border_split
border_diff
=
l_border_split
-
f_border_split
abs_border_diff
=
paddle
.
abs
(
border_diff
)
abs_border_diff
=
paddle
.
abs
(
border_diff
)
border_sign
=
abs_border_diff
<
1.0
border_sign
=
abs_border_diff
<
1.0
border_sign
=
paddle
.
cast
(
border_sign
,
dtype
=
'float32'
)
border_sign
=
paddle
.
cast
(
border_sign
,
dtype
=
'float32'
)
border_sign
.
stop_gradient
=
True
border_sign
.
stop_gradient
=
True
...
@@ -72,15 +71,16 @@ class SASTLoss(nn.Layer):
...
@@ -72,15 +71,16 @@ class SASTLoss(nn.Layer):
(
paddle
.
sum
(
l_border_score
*
l_border_mask
)
+
1e-5
)
(
paddle
.
sum
(
l_border_score
*
l_border_mask
)
+
1e-5
)
#tvo_loss
#tvo_loss
l_tvo_split
,
l_tvo_norm
=
paddle
.
split
(
l_tvo
,
num_or_sections
=
[
8
,
1
],
axis
=
1
)
l_tvo_split
,
l_tvo_norm
=
paddle
.
split
(
l_tvo
,
num_or_sections
=
[
8
,
1
],
axis
=
1
)
f_tvo_split
=
f_tvo
f_tvo_split
=
f_tvo
tvo_ex_shape
=
l_tvo_norm
.
shape
*
np
.
array
([
1
,
8
,
1
,
1
])
tvo_ex_shape
=
l_tvo_norm
.
shape
*
np
.
array
([
1
,
8
,
1
,
1
])
l_tvo_norm_split
=
paddle
.
expand
(
x
=
l_tvo_norm
,
shape
=
tvo_ex_shape
)
l_tvo_norm_split
=
paddle
.
expand
(
x
=
l_tvo_norm
,
shape
=
tvo_ex_shape
)
l_tvo_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
tvo_ex_shape
)
l_tvo_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
tvo_ex_shape
)
l_tvo_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
tvo_ex_shape
)
l_tvo_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
tvo_ex_shape
)
#
#
tvo_geo_diff
=
l_tvo_split
-
f_tvo_split
tvo_geo_diff
=
l_tvo_split
-
f_tvo_split
abs_tvo_geo_diff
=
paddle
.
abs
(
tvo_geo_diff
)
abs_tvo_geo_diff
=
paddle
.
abs
(
tvo_geo_diff
)
tvo_sign
=
abs_tvo_geo_diff
<
1.0
tvo_sign
=
abs_tvo_geo_diff
<
1.0
tvo_sign
=
paddle
.
cast
(
tvo_sign
,
dtype
=
'float32'
)
tvo_sign
=
paddle
.
cast
(
tvo_sign
,
dtype
=
'float32'
)
tvo_sign
.
stop_gradient
=
True
tvo_sign
.
stop_gradient
=
True
...
@@ -91,15 +91,16 @@ class SASTLoss(nn.Layer):
...
@@ -91,15 +91,16 @@ class SASTLoss(nn.Layer):
(
paddle
.
sum
(
l_tvo_score
*
l_tvo_mask
)
+
1e-5
)
(
paddle
.
sum
(
l_tvo_score
*
l_tvo_mask
)
+
1e-5
)
#tco_loss
#tco_loss
l_tco_split
,
l_tco_norm
=
paddle
.
split
(
l_tco
,
num_or_sections
=
[
2
,
1
],
axis
=
1
)
l_tco_split
,
l_tco_norm
=
paddle
.
split
(
l_tco
,
num_or_sections
=
[
2
,
1
],
axis
=
1
)
f_tco_split
=
f_tco
f_tco_split
=
f_tco
tco_ex_shape
=
l_tco_norm
.
shape
*
np
.
array
([
1
,
2
,
1
,
1
])
tco_ex_shape
=
l_tco_norm
.
shape
*
np
.
array
([
1
,
2
,
1
,
1
])
l_tco_norm_split
=
paddle
.
expand
(
x
=
l_tco_norm
,
shape
=
tco_ex_shape
)
l_tco_norm_split
=
paddle
.
expand
(
x
=
l_tco_norm
,
shape
=
tco_ex_shape
)
l_tco_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
tco_ex_shape
)
l_tco_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
tco_ex_shape
)
l_tco_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
tco_ex_shape
)
l_tco_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
tco_ex_shape
)
tco_geo_diff
=
l_tco_split
-
f_tco_split
tco_geo_diff
=
l_tco_split
-
f_tco_split
abs_tco_geo_diff
=
paddle
.
abs
(
tco_geo_diff
)
abs_tco_geo_diff
=
paddle
.
abs
(
tco_geo_diff
)
tco_sign
=
abs_tco_geo_diff
<
1.0
tco_sign
=
abs_tco_geo_diff
<
1.0
tco_sign
=
paddle
.
cast
(
tco_sign
,
dtype
=
'float32'
)
tco_sign
=
paddle
.
cast
(
tco_sign
,
dtype
=
'float32'
)
tco_sign
.
stop_gradient
=
True
tco_sign
.
stop_gradient
=
True
...
@@ -109,13 +110,12 @@ class SASTLoss(nn.Layer):
...
@@ -109,13 +110,12 @@ class SASTLoss(nn.Layer):
tco_loss
=
paddle
.
sum
(
tco_out_loss
*
l_tco_score
*
l_tco_mask
)
/
\
tco_loss
=
paddle
.
sum
(
tco_out_loss
*
l_tco_score
*
l_tco_mask
)
/
\
(
paddle
.
sum
(
l_tco_score
*
l_tco_mask
)
+
1e-5
)
(
paddle
.
sum
(
l_tco_score
*
l_tco_mask
)
+
1e-5
)
# total loss
# total loss
tvo_lw
,
tco_lw
=
1.5
,
1.5
tvo_lw
,
tco_lw
=
1.5
,
1.5
score_lw
,
border_lw
=
1.0
,
1.0
score_lw
,
border_lw
=
1.0
,
1.0
total_loss
=
score_loss
*
score_lw
+
border_loss
*
border_lw
+
\
total_loss
=
score_loss
*
score_lw
+
border_loss
*
border_lw
+
\
tvo_loss
*
tvo_lw
+
tco_loss
*
tco_lw
tvo_loss
*
tvo_lw
+
tco_loss
*
tco_lw
losses
=
{
'loss'
:
total_loss
,
"score_loss"
:
score_loss
,
\
losses
=
{
'loss'
:
total_loss
,
"score_loss"
:
score_loss
,
\
"border_loss"
:
border_loss
,
'tvo_loss'
:
tvo_loss
,
'tco_loss'
:
tco_loss
}
"border_loss"
:
border_loss
,
'tvo_loss'
:
tvo_loss
,
'tco_loss'
:
tco_loss
}
return
losses
return
losses
\ No newline at end of file
tools/infer/predict_cls.py
浏览文件 @
0ec11a29
...
@@ -24,7 +24,6 @@ import numpy as np
...
@@ -24,7 +24,6 @@ import numpy as np
import
math
import
math
import
time
import
time
import
traceback
import
traceback
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
...
@@ -39,7 +38,6 @@ class TextClassifier(object):
...
@@ -39,7 +38,6 @@ class TextClassifier(object):
self
.
cls_image_shape
=
[
int
(
v
)
for
v
in
args
.
cls_image_shape
.
split
(
","
)]
self
.
cls_image_shape
=
[
int
(
v
)
for
v
in
args
.
cls_image_shape
.
split
(
","
)]
self
.
cls_batch_num
=
args
.
cls_batch_num
self
.
cls_batch_num
=
args
.
cls_batch_num
self
.
cls_thresh
=
args
.
cls_thresh
self
.
cls_thresh
=
args
.
cls_thresh
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
postprocess_params
=
{
postprocess_params
=
{
'name'
:
'ClsPostProcess'
,
'name'
:
'ClsPostProcess'
,
"label_list"
:
args
.
label_list
,
"label_list"
:
args
.
label_list
,
...
@@ -99,12 +97,8 @@ class TextClassifier(object):
...
@@ -99,12 +97,8 @@ class TextClassifier(object):
norm_img_batch
=
norm_img_batch
.
copy
()
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
starttime
=
time
.
time
()
if
self
.
use_zero_copy_run
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
self
.
predictor
.
zero_copy_run
()
else
:
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
self
.
predictor
.
run
([
norm_img_batch
])
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
cls_result
=
self
.
postprocess_op
(
prob_out
)
cls_result
=
self
.
postprocess_op
(
prob_out
)
elapse
+=
time
.
time
()
-
starttime
elapse
+=
time
.
time
()
-
starttime
...
@@ -143,10 +137,11 @@ def main(args):
...
@@ -143,10 +137,11 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
exit
()
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
cls_res
[
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
ino
]))
cls_res
[
ino
]))
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
len
(
img_list
),
predict_time
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
(
utility
.
parse_args
())
main
(
utility
.
parse_args
())
tools/infer/predict_det.py
浏览文件 @
0ec11a29
...
@@ -22,7 +22,6 @@ import cv2
...
@@ -22,7 +22,6 @@ import cv2
import
numpy
as
np
import
numpy
as
np
import
time
import
time
import
sys
import
sys
import
paddle
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.logging
import
get_logger
...
@@ -37,7 +36,6 @@ class TextDetector(object):
...
@@ -37,7 +36,6 @@ class TextDetector(object):
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
args
=
args
self
.
det_algorithm
=
args
.
det_algorithm
self
.
det_algorithm
=
args
.
det_algorithm
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
pre_process_list
=
[{
pre_process_list
=
[{
'DetResizeForTest'
:
{
'DetResizeForTest'
:
{
'limit_side_len'
:
args
.
det_limit_side_len
,
'limit_side_len'
:
args
.
det_limit_side_len
,
...
@@ -72,7 +70,9 @@ class TextDetector(object):
...
@@ -72,7 +70,9 @@ class TextDetector(object):
postprocess_params
[
"nms_thresh"
]
=
args
.
det_east_nms_thresh
postprocess_params
[
"nms_thresh"
]
=
args
.
det_east_nms_thresh
elif
self
.
det_algorithm
==
"SAST"
:
elif
self
.
det_algorithm
==
"SAST"
:
pre_process_list
[
0
]
=
{
pre_process_list
[
0
]
=
{
'DetResizeForTest'
:
{
'resize_long'
:
args
.
det_limit_side_len
}
'DetResizeForTest'
:
{
'resize_long'
:
args
.
det_limit_side_len
}
}
}
postprocess_params
[
'name'
]
=
'SASTPostProcess'
postprocess_params
[
'name'
]
=
'SASTPostProcess'
postprocess_params
[
"score_thresh"
]
=
args
.
det_sast_score_thresh
postprocess_params
[
"score_thresh"
]
=
args
.
det_sast_score_thresh
...
@@ -161,12 +161,8 @@ class TextDetector(object):
...
@@ -161,12 +161,8 @@ class TextDetector(object):
img
=
img
.
copy
()
img
=
img
.
copy
()
starttime
=
time
.
time
()
starttime
=
time
.
time
()
if
self
.
use_zero_copy_run
:
self
.
input_tensor
.
copy_from_cpu
(
img
)
self
.
input_tensor
.
copy_from_cpu
(
img
)
self
.
predictor
.
run
()
self
.
predictor
.
zero_copy_run
()
else
:
im
=
paddle
.
fluid
.
core
.
PaddleTensor
(
img
)
self
.
predictor
.
run
([
im
])
outputs
=
[]
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
output
=
output_tensor
.
copy_to_cpu
()
...
...
tools/infer/predict_rec.py
浏览文件 @
0ec11a29
...
@@ -23,7 +23,6 @@ import numpy as np
...
@@ -23,7 +23,6 @@ import numpy as np
import
math
import
math
import
time
import
time
import
traceback
import
traceback
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
...
@@ -39,7 +38,6 @@ class TextRecognizer(object):
...
@@ -39,7 +38,6 @@ class TextRecognizer(object):
self
.
character_type
=
args
.
rec_char_type
self
.
character_type
=
args
.
rec_char_type
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
postprocess_params
=
{
postprocess_params
=
{
'name'
:
'CTCLabelDecode'
,
'name'
:
'CTCLabelDecode'
,
"character_type"
:
args
.
rec_char_type
,
"character_type"
:
args
.
rec_char_type
,
...
@@ -101,12 +99,8 @@ class TextRecognizer(object):
...
@@ -101,12 +99,8 @@ class TextRecognizer(object):
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
norm_img_batch
.
copy
()
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
starttime
=
time
.
time
()
if
self
.
use_zero_copy_run
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
self
.
predictor
.
zero_copy_run
()
else
:
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
self
.
predictor
.
run
([
norm_img_batch
])
outputs
=
[]
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
output
=
output_tensor
.
copy_to_cpu
()
...
@@ -145,8 +139,8 @@ def main(args):
...
@@ -145,8 +139,8 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
exit
()
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
rec_res
[
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
ino
]))
rec_res
[
ino
]))
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
len
(
img_list
),
predict_time
))
...
...
tools/infer/utility.py
浏览文件 @
0ec11a29
...
@@ -20,8 +20,7 @@ import numpy as np
...
@@ -20,8 +20,7 @@ import numpy as np
import
json
import
json
from
PIL
import
Image
,
ImageDraw
,
ImageFont
from
PIL
import
Image
,
ImageDraw
,
ImageFont
import
math
import
math
from
paddle.fluid.core
import
AnalysisConfig
from
paddle
import
inference
from
paddle.fluid.core
import
create_paddle_predictor
def
parse_args
():
def
parse_args
():
...
@@ -83,8 +82,6 @@ def parse_args():
...
@@ -83,8 +82,6 @@ def parse_args():
parser
.
add_argument
(
"--cls_thresh"
,
type
=
float
,
default
=
0.9
)
parser
.
add_argument
(
"--cls_thresh"
,
type
=
float
,
default
=
0.9
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_zero_copy_run"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_pdserving"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_pdserving"
,
type
=
str2bool
,
default
=
False
)
return
parser
.
parse_args
()
return
parser
.
parse_args
()
...
@@ -110,14 +107,14 @@ def create_predictor(args, mode, logger):
...
@@ -110,14 +107,14 @@ def create_predictor(args, mode, logger):
logger
.
info
(
"not find params file path {}"
.
format
(
params_file_path
))
logger
.
info
(
"not find params file path {}"
.
format
(
params_file_path
))
sys
.
exit
(
0
)
sys
.
exit
(
0
)
config
=
Analysis
Config
(
model_file_path
,
params_file_path
)
config
=
inference
.
Config
(
model_file_path
,
params_file_path
)
if
args
.
use_gpu
:
if
args
.
use_gpu
:
config
.
enable_use_gpu
(
args
.
gpu_mem
,
0
)
config
.
enable_use_gpu
(
args
.
gpu_mem
,
0
)
if
args
.
use_tensorrt
:
if
args
.
use_tensorrt
:
config
.
enable_tensorrt_engine
(
config
.
enable_tensorrt_engine
(
precision_mode
=
AnalysisConfig
.
Precision
.
Half
precision_mode
=
inference
.
PrecisionType
.
Half
if
args
.
use_fp16
else
AnalysisConfig
.
Precision
.
Float32
,
if
args
.
use_fp16
else
inference
.
PrecisionType
.
Float32
,
max_batch_size
=
args
.
max_batch_size
)
max_batch_size
=
args
.
max_batch_size
)
else
:
else
:
config
.
disable_gpu
()
config
.
disable_gpu
()
...
@@ -130,20 +127,18 @@ def create_predictor(args, mode, logger):
...
@@ -130,20 +127,18 @@ def create_predictor(args, mode, logger):
# config.enable_memory_optim()
# config.enable_memory_optim()
config
.
disable_glog_info
()
config
.
disable_glog_info
()
if
args
.
use_zero_copy_run
:
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
switch_use_feed_fetch_ops
(
False
)
config
.
switch_use_feed_fetch_ops
(
False
)
else
:
config
.
switch_use_feed_fetch_ops
(
True
)
predictor
=
create_paddle_predictor
(
config
)
# create predictor
predictor
=
inference
.
create_predictor
(
config
)
input_names
=
predictor
.
get_input_names
()
input_names
=
predictor
.
get_input_names
()
for
name
in
input_names
:
for
name
in
input_names
:
input_tensor
=
predictor
.
get_input_
tensor
(
name
)
input_tensor
=
predictor
.
get_input_
handle
(
name
)
output_names
=
predictor
.
get_output_names
()
output_names
=
predictor
.
get_output_names
()
output_tensors
=
[]
output_tensors
=
[]
for
output_name
in
output_names
:
for
output_name
in
output_names
:
output_tensor
=
predictor
.
get_output_
tensor
(
output_name
)
output_tensor
=
predictor
.
get_output_
handle
(
output_name
)
output_tensors
.
append
(
output_tensor
)
output_tensors
.
append
(
output_tensor
)
return
predictor
,
input_tensor
,
output_tensors
return
predictor
,
input_tensor
,
output_tensors
...
...
tools/program.py
浏览文件 @
0ec11a29
...
@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
...
@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
"model on CPU"
"model on CPU"
try
:
try
:
if
use_gpu
and
not
paddle
.
fluid
.
is_compiled_with_cuda
():
if
use_gpu
and
not
paddle
.
is_compiled_with_cuda
():
print
(
err
)
print
(
err
)
sys
.
exit
(
1
)
sys
.
exit
(
1
)
except
Exception
as
e
:
except
Exception
as
e
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录