Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
04fb6148
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
04fb6148
编写于
6月 09, 2021
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add log_path to params.txt
上级
4a179f5f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
24 addition
and
14 deletion
+24
-14
test/params.txt
test/params.txt
+2
-2
test/test.sh
test/test.sh
+22
-12
未找到文件。
test/params.txt
浏览文件 @
04fb6148
...
...
@@ -4,7 +4,7 @@ auto_cast_list: False
trainer_list: norm|quant|prune
python: python3.7
inference: python
|C++
inference: python
devices: cpu|gpu
use_mkldnn_list: True|False
cpu_threads_list: 1|6
...
...
@@ -12,4 +12,4 @@ rec_batch_size_list: 1|6
gpu_trt_list: True|False
gpu_precision_list: fp32|fp16|int8
log_path: ./output
test/test.sh
浏览文件 @
04fb6148
...
...
@@ -8,11 +8,12 @@ FILENAME=$1
MODE
=
$2
# prepare pretrained weights and dataset
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
if
[
${
MODE
}
=
"lite_train_infer"
]
;
then
# pretrain lite train data
rm
-rf
./train_data/icdar2015
wget
-nc
-P
./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
cd
./train_data/
&&
tar
xf icdar2015_lite.tar
&&
cd
./train_data/
&&
tar
xf icdar2015_lite.tar
ln
-s
./icdar2015_lite ./icdar2015
cd
../
epoch
=
10
...
...
@@ -24,9 +25,17 @@ elif [ ${MODE} = "whole_train_infer" ];then
epoch
=
500
eval_batch_step
=
200
else
echo
"Do Nothing"
rm
-rf
./train_data/icdar2015
wget
-nc
-P
./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
cd
./train_data/
&&
tar
xf icdar2015_infer.tar
ln
-s
./icdar2015_infer ./icdar2015
cd
../
epoch
=
10
eval_batch_step
=
10
fi
img_dir
=
"./train_data/icdar2015/text_localization/ch4_test_images/"
dataline
=
$(
cat
${
FILENAME
}
)
# parser params
...
...
@@ -34,7 +43,7 @@ IFS=$'\n'
lines
=(
${
dataline
}
)
function
func_parser
(){
strs
=
$1
IFS
=
":"
IFS
=
":
"
array
=(
${
strs
}
)
tmp
=
${
array
[1]
}
echo
${
tmp
}
...
...
@@ -54,7 +63,8 @@ cpu_threads_list=$(func_parser "${lines[8]}")
rec_batch_size_list
=
$(
func_parser
"
${
lines
[9]
}
"
)
gpu_trt_list
=
$(
func_parser
"
${
lines
[10]
}
"
)
gpu_precision_list
=
$(
func_parser
"
${
lines
[11]
}
"
)
img_dir
=
"./train_data/icdar2015/text_localization/ch4_test_images/"
log_path
=
$(
func_parser
"
${
lines
[12]
}
"
)
function
status_check
(){
last_status
=
$1
# the exit code
...
...
@@ -113,12 +123,12 @@ for train_model in ${train_model_list[*]}; do
fi
save_log
=
${
log_path
}
/
${
model_name
}
_
${
slim_trainer
}
_autocast_
${
auto_cast
}
_gpuid_
${
gpu
}
command
=
"
${
python
}
${
launch
}
${
trainer
}
-c
${
yml_file
}
-o Global.epoch_num=
${
epoch
}
Global.eval_batch_step=
${
eval_batch_step
}
Global.auto_cast=
${
auto_cast
}
Global.save_model_dir=
${
save_log
}
Global.use_gpu=
${
use_gpu
}
"
${
python
}
${
launch
}
${
trainer
}
-c
${
yml_file
}
-o
Global.epoch_num
=
${
epoch
}
Global.eval_batch_step
=
${
eval_batch_step
}
Global.auto_cast
=
${
auto_cast
}
Global.save_model_dir
=
${
save_log
}
Global.use_gpu
=
${
use_gpu
}
status_check
$?
"
${
trainer
}
"
"
${
command
}
"
"
${
save_log
}
/train.log"
echo
${
python
}
${
launch
}
${
trainer
}
-c
${
yml_file
}
-o
Global.epoch_num
=
${
epoch
}
Global.eval_batch_step
=
${
eval_batch_step
}
Global.auto_cast
=
${
auto_cast
}
Global.save_model_dir
=
${
save_log
}
Global.use_gpu
=
${
use_gpu
}
#
status_check $? "${trainer}" "${command}" "${save_log}/train.log"
command
=
"
${
python
}
${
export_model
}
-c
${
yml_file
}
-o Global.pretrained_model=
${
save_log
}
/best_accuracy Global.save_inference_dir=
${
save_log
}
/export_inference/ Global.save_model_dir=
${
save_log
}
"
${
python
}
${
export_model
}
-c
${
yml_file
}
-o
Global.pretrained_model
=
${
save_log
}
/best_accuracy Global.save_inference_dir
=
${
save_log
}
/export_inference/ Global.save_model_dir
=
${
save_log
}
status_check
$?
"
${
trainer
}
"
"
${
command
}
"
"
${
save_log
}
/train.log"
echo
${
python
}
${
export_model
}
-c
${
yml_file
}
-o
Global.pretrained_model
=
${
save_log
}
/best_accuracy Global.save_inference_dir
=
${
save_log
}
/export_inference/ Global.save_model_dir
=
${
save_log
}
#
status_check $? "${trainer}" "${command}" "${save_log}/train.log"
if
[
"
${
model_name
}
"
=
"det"
]
;
then
export
rec_batch_size_list
=(
"1"
)
...
...
@@ -138,8 +148,8 @@ for train_model in ${train_model_list[*]}; do
for
rec_batch_size
in
${
rec_batch_size_list
[*]
}
;
do
save_log_path
=
"
${
log_path
}
/
${
model_name
}
_
${
slim_trainer
}
_cpu_usemkldnn_
${
use_mkldnn
}
_cputhreads_
${
threads
}
_recbatchnum_
${
rec_batch_size
}
_infer.log"
command
=
"
${
python
}
${
inference
}
--enable_mkldnn=
${
use_mkldnn
}
--use_gpu=False --cpu_threads=
${
threads
}
--benchmark=True --det_model_dir=
${
save_log
}
/export_inference/ --rec_batch_num=
${
rec_batch_size
}
--rec_model_dir=
${
rec_model_dir
}
--image_dir=
${
img_dir
}
--save_log_path=
${
save_log_path
}
"
${
python
}
${
inference
}
--enable_mkldnn
=
${
use_mkldnn
}
--use_gpu
=
False
--cpu_threads
=
${
threads
}
--benchmark
=
True
--det_model_dir
=
${
save_log
}
/export_inference/
--rec_batch_num
=
${
rec_batch_size
}
--rec_model_dir
=
${
rec_model_dir
}
--image_dir
=
${
img_dir
}
--save_log_path
=
${
save_log_path
}
status_check
$?
"
${
inference
}
"
"
${
command
}
"
"
${
save_log
}
"
echo
${
python
}
${
inference
}
--enable_mkldnn
=
${
use_mkldnn
}
--use_gpu
=
False
--cpu_threads
=
${
threads
}
--benchmark
=
True
--det_model_dir
=
${
save_log
}
/export_inference/
--rec_batch_num
=
${
rec_batch_size
}
--rec_model_dir
=
${
rec_model_dir
}
--image_dir
=
${
img_dir
}
--save_log_path
=
${
save_log_path
}
#
status_check $? "${inference}" "${command}" "${save_log}"
done
done
done
...
...
@@ -151,8 +161,8 @@ for train_model in ${train_model_list[*]}; do
fi
for
rec_batch_size
in
${
rec_batch_size_list
[*]
}
;
do
save_log_path
=
"
${
log_path
}
/
${
model_name
}
_
${
slim_trainer
}
_gpu_usetensorrt_
${
use_trt
}
_usefp16_
${
precision
}
_recbatchnum_
${
rec_batch_size
}
_infer.log"
${
python
}
${
inference
}
--use_gpu
=
True
--use_tensorrt
=
${
use_trt
}
--precision
=
${
precision
}
--benchmark
=
True
--det_model_dir
=
${
save_log
}
/export_inference/
--rec_batch_num
=
${
rec_batch_size
}
--rec_model_dir
=
${
rec_model_dir
}
--image_dir
=
${
img_dir
}
--save_log_path
=
${
save_log_path
}
status_check
$?
"
${
inference
}
"
"
${
command
}
"
"
${
save_log
}
"
echo
${
python
}
${
inference
}
--use_gpu
=
True
--use_tensorrt
=
${
use_trt
}
--precision
=
${
precision
}
--benchmark
=
True
--det_model_dir
=
${
save_log
}
/export_inference/
--rec_batch_num
=
${
rec_batch_size
}
--rec_model_dir
=
${
rec_model_dir
}
--image_dir
=
${
img_dir
}
--save_log_path
=
${
save_log_path
}
#
status_check $? "${inference}" "${command}" "${save_log}"
done
done
done
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录