readme_en.md 10.9 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- [Server-side C++ Inference](#server-side-c-inference)
  - [1. Prepare the Environment](#1-prepare-the-environment)
    - [Environment](#environment)
    - [1.1 Compile OpenCV](#11-compile-opencv)
    - [1.2 Compile or Download or the Paddle Inference Library](#12-compile-or-download-or-the-paddle-inference-library)
      - [1.2.1 Direct download and installation](#121-direct-download-and-installation)
      - [1.2.2 Compile the inference source code](#122-compile-the-inference-source-code)
  - [2. Compile and Run the Demo](#2-compile-and-run-the-demo)
    - [2.1 Export the inference model](#21-export-the-inference-model)
    - [2.2 Compile PaddleOCR C++ inference demo](#22-compile-paddleocr-c-inference-demo)
    - [Run the demo](#run-the-demo)
        - [1. run det demo:](#1-run-det-demo)
        - [2. run rec demo:](#2-run-rec-demo)
        - [3. run system demo:](#3-run-system-demo)
  - [3. FAQ](#3-faq)

17
# Server-side C++ Inference
littletomatodonkey's avatar
littletomatodonkey 已提交
18

fanruinet's avatar
fanruinet 已提交
19 20 21
This chapter introduces the C++ deployment steps of the PaddleOCR model. The corresponding Python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance. Therefore, in CPU and GPU deployment scenarios, C++ deployment is mostly used.
This section will introduce how to configure the C++ environment and deploy PaddleOCR in Linux (CPU\GPU) environment. For Windows deployment please refer to [Windows](./docs/windows_vs2019_build.md) compilation guidelines.
littletomatodonkey's avatar
littletomatodonkey 已提交
22 23


24
## 1. Prepare the Environment
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26 27 28

### Environment

- Linux, docker is recommended.
文幕地方's avatar
文幕地方 已提交
29
- Windows.
littletomatodonkey's avatar
littletomatodonkey 已提交
30 31


32
### 1.1 Compile OpenCV
littletomatodonkey's avatar
littletomatodonkey 已提交
33

fanruinet's avatar
fanruinet 已提交
34
* First of all, you need to download the source code compiled package in the Linux environment from the OpenCV official website. Taking OpenCV 3.4.7 as an example, the download command is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
35

littletomatodonkey's avatar
littletomatodonkey 已提交
36
```bash
W
WenmuZhou 已提交
37
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey 已提交
38 39
wget https://paddleocr.bj.bcebos.com/libs/opencv/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
littletomatodonkey's avatar
littletomatodonkey 已提交
40 41
```

fanruinet's avatar
fanruinet 已提交
42
Finally, you will see the folder of `opencv-3.4.7/` in the current directory.
littletomatodonkey's avatar
littletomatodonkey 已提交
43

fanruinet's avatar
fanruinet 已提交
44
* Compile OpenCV, the OpenCV source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the OpenCV source code path and compile it in the following way.
littletomatodonkey's avatar
littletomatodonkey 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3

rm -rf build
mkdir build
cd build

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

fanruinet's avatar
fanruinet 已提交
77
In the above commands, `root_path` is the downloaded OpenCV source code path, and `install_path` is the installation path of OpenCV. After `make install` is completed, the OpenCV header file and library file will be generated in this folder for later OCR source code compilation.
littletomatodonkey's avatar
littletomatodonkey 已提交
78 79 80



fanruinet's avatar
fanruinet 已提交
81
The final file structure under the OpenCV installation path is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
82 83 84 85 86 87 88 89 90 91

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

92
### 1.2 Compile or Download or the Paddle Inference Library
littletomatodonkey's avatar
littletomatodonkey 已提交
93 94 95

* There are 2 ways to obtain the Paddle inference library, described in detail below.

littletomatodonkey's avatar
littletomatodonkey 已提交
96
#### 1.2.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey 已提交
97

文幕地方's avatar
文幕地方 已提交
98
[Paddle inference library official website](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#linux). You can review and select the appropriate version of the inference library on the official website.
littletomatodonkey's avatar
littletomatodonkey 已提交
99 100


fanruinet's avatar
fanruinet 已提交
101
* After downloading, use the following command to extract files.
littletomatodonkey's avatar
littletomatodonkey 已提交
102 103 104 105 106

```
tar -xf paddle_inference.tgz
```

fanruinet's avatar
fanruinet 已提交
107
Finally you will see the the folder of `paddle_inference/` in the current path.
littletomatodonkey's avatar
littletomatodonkey 已提交
108

fanruinet's avatar
fanruinet 已提交
109 110 111
#### 1.2.2 Compile the inference source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle GitHub repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from GitHub, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
112 113 114 115


```shell
git clone https://github.com/PaddlePaddle/Paddle.git
L
LDOUBLEV 已提交
116
git checkout develop
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118
```

fanruinet's avatar
fanruinet 已提交
119
* Enter the Paddle directory and run the following commands to compile the paddle inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
    -DWITH_MKLDNN=ON  \
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
make -j
make inference_lib_dist
```

L
LDOUBLEV 已提交
139
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141


L
LDOUBLEV 已提交
142
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
143 144

```
L
LDOUBLEV 已提交
145
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey 已提交
146 147 148 149 150 151
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

fanruinet's avatar
fanruinet 已提交
152
`paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
153 154


155
## 2. Compile and Run the Demo
littletomatodonkey's avatar
littletomatodonkey 已提交
156 157 158

### 2.1 Export the inference model

fanruinet's avatar
fanruinet 已提交
159
* You can refer to [Model inference](../../doc/doc_ch/inference.md) and export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162 163

```
inference/
|-- det_db
M
MissPenguin 已提交
164 165
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
166
|-- rec_rcnn
M
MissPenguin 已提交
167 168
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
169 170 171 172 173 174 175 176 177
```


### 2.2 Compile PaddleOCR C++ inference demo


* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.

```shell
M
MissPenguin 已提交
178
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey 已提交
179 180
```

M
MissPenguin 已提交
181
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
182 183 184 185 186 187 188 189

```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
```

fanruinet's avatar
fanruinet 已提交
190
`OPENCV_DIR` is the OpenCV installation path; `LIB_DIR` is the download (`paddle_inference` folder)
L
LDOUBLEV 已提交
191
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
fanruinet's avatar
fanruinet 已提交
192
`CUDA_LIB_DIR` is the CUDA library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cuDNN library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
193 194


M
MissPenguin 已提交
195
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey 已提交
196 197 198


### Run the demo
fanruinet's avatar
fanruinet 已提交
199
Execute the built executable file:
M
MissPenguin 已提交
200 201
```shell
./build/ppocr <mode> [--param1] [--param2] [...]
202
```
fanruinet's avatar
fanruinet 已提交
203 204 205 206 207 208 209 210 211
`mode` is a required parameter,and the valid values are

mode value | Model used
-----|------
det  | Detection only
rec  | Recognition only
system | End-to-end system

Specifically,
M
MissPenguin 已提交
212 213

##### 1. run det demo:
littletomatodonkey's avatar
littletomatodonkey 已提交
214
```shell
M
MissPenguin 已提交
215
./build/ppocr det \
M
MissPenguin 已提交
216
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
M
MissPenguin 已提交
217
    --image_dir=../../doc/imgs/12.jpg
littletomatodonkey's avatar
littletomatodonkey 已提交
218
```
M
MissPenguin 已提交
219
##### 2. run rec demo:
M
MissPenguin 已提交
220
```shell
M
MissPenguin 已提交
221
./build/ppocr rec \
M
MissPenguin 已提交
222
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
M
MissPenguin 已提交
223
    --image_dir=../../doc/imgs_words/ch/
Z
zhoujun 已提交
224
```
M
MissPenguin 已提交
225
##### 3. run system demo:
M
MissPenguin 已提交
226 227
```shell
# without text direction classifier
M
MissPenguin 已提交
228
./build/ppocr system \
M
MissPenguin 已提交
229 230
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
M
MissPenguin 已提交
231 232
    --image_dir=../../doc/imgs/12.jpg
# with text direction classifier
M
MissPenguin 已提交
233
./build/ppocr system \
M
MissPenguin 已提交
234 235 236 237
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --use_angle_cls=true \
    --cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
M
MissPenguin 已提交
238 239 240
    --image_dir=../../doc/imgs/12.jpg
```

fanruinet's avatar
fanruinet 已提交
241
More parameters are as follows,
M
MissPenguin 已提交
242

fanruinet's avatar
fanruinet 已提交
243
- Common parameters
M
MissPenguin 已提交
244

M
MissPenguin 已提交
245 246 247 248 249 250
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
文幕地方's avatar
文幕地方 已提交
251
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
文幕地方's avatar
文幕地方 已提交
252
|output|str|./output|Path where visualization results are saved|
M
MissPenguin 已提交
253

fanruinet's avatar
fanruinet 已提交
254
- Detection related parameters
M
MissPenguin 已提交
255 256 257

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
M
MissPenguin 已提交
258 259 260 261 262
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
文幕地方's avatar
fix bug  
文幕地方 已提交
263
|det_db_score_mode|string|slow| slow: use polygon box to calculate bbox score, fast: use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
文幕地方's avatar
文幕地方 已提交
264
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
M
MissPenguin 已提交
265

fanruinet's avatar
fanruinet 已提交
266
- Classifier related parameters
M
MissPenguin 已提交
267 268 269

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
M
MissPenguin 已提交
270 271 272
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
M
MissPenguin 已提交
273

fanruinet's avatar
fanruinet 已提交
274
- Recognition related parameters
M
MissPenguin 已提交
275 276 277

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
M
MissPenguin 已提交
278
|rec_model_dir|string|-|Address of recognition inference model|
文幕地方's avatar
文幕地方 已提交
279
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
M
MissPenguin 已提交
280

文幕地方's avatar
文幕地方 已提交
281
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
Z
zhoujun 已提交
282 283


littletomatodonkey's avatar
littletomatodonkey 已提交
284 285 286
The detection results will be shown on the screen, which is as follows.

<div align="center">
littletomatodonkey's avatar
littletomatodonkey 已提交
287
    <img src="./imgs/cpp_infer_pred_12.png" width="600">
littletomatodonkey's avatar
littletomatodonkey 已提交
288 289 290
</div>


文幕地方's avatar
文幕地方 已提交
291
## 3. FAQ
littletomatodonkey's avatar
littletomatodonkey 已提交
292

文幕地方's avatar
文幕地方 已提交
293
 1.  Encountered the error `unable to access 'https://github.com/LDOUBLEV/AutoLog.git/': gnutls_handshake() failed: The TLS connection was non-properly terminated.`, change the github address in `deploy/cpp_infer/external-cmake/auto-log.cmake` to the https://gitee.com/Double_V/AutoLog address.