detection_en.md 13.1 KB
Newer Older
1
# Text Detection
L
LDOUBLEV 已提交
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
L
LDOUBLEV 已提交
4

5 6
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
  * [1.1 Data Preparation](#11-data-preparation)
文幕地方's avatar
文幕地方 已提交
7 8
    * [1.1.1 Public dataset](#111-public-dataset)
    * [1.1.2 Custom dataset](#112-custom-dataset)
fanruinet's avatar
fanruinet 已提交
9
  * [1.2 Download Pre-trained Model](#12-download-pretrained-model)
10 11 12 13
- [2. Training](#2-training)
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
14
  * [2.4 Training with knowledge distillation](#24)
15 16 17 18 19
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#2-faq)
K
Khanh Tran 已提交
20

21
## 1. Data and Weights Preparation
K
Khanh Tran 已提交
22

23
### 1.1 Data Preparation
L
LDOUBLEV 已提交
24

文幕地方's avatar
文幕地方 已提交
25 26
### 1.1.1 Public dataset
Public datasets can be downloaded and prepared by referring to [ocr_datasets](./dataset/ocr_datasets_en.md).
K
Khanh Tran 已提交
27

文幕地方's avatar
文幕地方 已提交
28
### 1.1.2 Custom dataset
L
LDOUBLEV 已提交
29

文幕地方's avatar
文幕地方 已提交
30
The annotation file formats supported by the PaddleOCR text detection algorithm are as follows, separated by "\t":
K
Khanh Tran 已提交
31 32
```
" Image file name             Image annotation information encoded by json.dumps"
L
LDOUBLEV 已提交
33
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
K
Khanh Tran 已提交
34
```
W
WenmuZhou 已提交
35
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
K
Khanh Tran 已提交
36

L
licx 已提交
37 38 39 40 41
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**

If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
K
Khanh Tran 已提交
42 43


fanruinet's avatar
fanruinet 已提交
44
### 1.2 Download Pre-trained Model
45

fanruinet's avatar
fanruinet 已提交
46 47
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
K
Khanh Tran 已提交
48

L
licx 已提交
49
```shell
K
Khanh Tran 已提交
50 51
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
T
tink2123 已提交
52
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
W
WenmuZhou 已提交
53
# or, download the pre-trained model of ResNet18_vd
T
tink2123 已提交
54
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
W
WenmuZhou 已提交
55
# or, download the pre-trained model of ResNet50_vd
T
tink2123 已提交
56
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
57

58
```
K
Khanh Tran 已提交
59

qq_25193841's avatar
qq_25193841 已提交
60
## 2. Training
61 62 63

### 2.1 Start Training

M
MissPenguin 已提交
64
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
L
licx 已提交
65
```shell
66
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
qq_25193841's avatar
qq_25193841 已提交
67
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
K
Khanh Tran 已提交
68 69
```

M
MissPenguin 已提交
70 71
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
K
Khanh Tran 已提交
72

73
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
L
licx 已提交
74
```shell
L
update  
LDOUBLEV 已提交
75
# single GPU training
76
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
qq_25193841's avatar
qq_25193841 已提交
77
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
78
         Optimizer.base_lr=0.0001
L
update  
LDOUBLEV 已提交
79 80

# multi-GPU training
81
# Set the GPU ID used by the '--gpus' parameter.
qq_25193841's avatar
qq_25193841 已提交
82
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
S
stephon 已提交
83

B
Bin Lu 已提交
84
# multi-Node, multi-GPU training
B
Bin Lu 已提交
85
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
S
stephon 已提交
86
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
B
Bin Lu 已提交
87 88
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
S
stephon 已提交
89 90
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

B
Bin Lu 已提交
91
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
B
Bin Lu 已提交
92 93 94 95
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
K
Khanh Tran 已提交
96 97
```

98
### 2.2 Load Trained Model and Continue Training
99
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
L
LDOUBLEV 已提交
100 101

For example:
L
licx 已提交
102
```shell
L
LDOUBLEV 已提交
103
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
L
LDOUBLEV 已提交
104 105
```

qq_25193841's avatar
qq_25193841 已提交
106
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
L
LDOUBLEV 已提交
107 108


109
### 2.3 Training with New Backbone
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

159 160 161 162 163

### 2.4 Training with knowledge distillation

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

164 165 166
## 3. Evaluation and Test

### 3.1 Evaluation
K
Khanh Tran 已提交
167

168
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
K
Khanh Tran 已提交
169

L
LDOUBLEV 已提交
170
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
K
Khanh Tran 已提交
171

172
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
K
Khanh Tran 已提交
173

L
LDOUBLEV 已提交
174
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
L
licx 已提交
175
```shell
L
LDOUBLEV 已提交
176
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
K
Khanh Tran 已提交
177 178
```

179
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
K
Khanh Tran 已提交
180

181
### 3.2 Test
K
Khanh Tran 已提交
182 183

Test the detection result on a single image:
184
```shell
185
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
K
Khanh Tran 已提交
186 187 188
```

When testing the DB model, adjust the post-processing threshold:
189
```shell
190
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
K
Khanh Tran 已提交
191 192 193 194
```


Test the detection result on all images in the folder:
195
```shell
196
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
K
Khanh Tran 已提交
197
```
198

199
## 4. Inference
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

222
## 5. FAQ
223 224

Q1: The prediction results of trained model and inference model are inconsistent?
225

226 227 228
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).