utility.py 24.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
Z
zhoujun 已提交
20
import paddle
L
LDOUBLEV 已提交
21
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66 67 68 69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
W
WenmuZhou 已提交
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
W
WenmuZhou 已提交
71 72
    parser.add_argument("--det_pse_scale", type=int, default=1)

W
WenmuZhou 已提交
73
    # params for text recognizer
L
LDOUBLEV 已提交
74 75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
76
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
L
LDOUBLEV 已提交
77
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
78
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
79 80 81 82
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
83 84
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
85
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
86
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
87

J
Jethong 已提交
88 89 90 91 92 93 94 95 96
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
97
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
98
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
99
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
100

W
WenmuZhou 已提交
101 102 103 104 105
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
106
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
107 108 109
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
110
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
111
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
112 113 114 115 116
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
L
LDOUBLEV 已提交
117
    parser.add_argument("--is_visualize", type=str2bool, default=True)
118 119
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
120

L
LDOUBLEV 已提交
121
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
122
    parser.add_argument("--use_mp", type=str2bool, default=False)
123 124
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
125

littletomatodonkey's avatar
littletomatodonkey 已提交
126
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
127
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
128

W
WenmuZhou 已提交
129
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
130
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
131
    return parser
W
WenmuZhou 已提交
132

133

134
def parse_args():
W
WenmuZhou 已提交
135
    parser = init_args()
L
LDOUBLEV 已提交
136 137 138
    return parser.parse_args()


W
WenmuZhou 已提交
139 140 141 142 143
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
144
    elif mode == 'rec':
W
WenmuZhou 已提交
145
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
146 147
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
148 149
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
150 151 152 153

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
154 155 156 157 158 159 160 161
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
162

L
LDOUBLEV 已提交
163
    else:
T
tink2123 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
182
        else:
T
tink2123 已提交
183 184 185 186 187
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
188
                logger.warning(
L
LDOUBLEV 已提交
189
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
T
tink2123 已提交
190 191 192 193
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
194
                    workspace_size=1 << 30,
T
tink2123 已提交
195 196 197 198
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.min_subgraph_size)
                # skip the minmum trt subgraph
L
fix trt  
LDOUBLEV 已提交
199
            use_dynamic_shape = True
L
fix  
LDOUBLEV 已提交
200
            if mode == "det":
T
tink2123 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
L
fix trt  
LDOUBLEV 已提交
216
                    "x": [1, 3, 1536, 1536],
T
tink2123 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
L
fix trt  
LDOUBLEV 已提交
265 266
                if args.rec_algorithm != "CRNN":
                    use_dynamic_shape = False
T
tink2123 已提交
267
                min_input_shape = {"x": [1, 3, 32, 10]}
L
LDOUBLEV 已提交
268
                max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]}
T
tink2123 已提交
269 270 271
                opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
272
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
T
tink2123 已提交
273 274
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
L
fix trt  
LDOUBLEV 已提交
275 276
                use_dynamic_shape = False
            if use_dynamic_shape:
A
andyjpaddle 已提交
277 278
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
L
LDOUBLEV 已提交
279

L
LDOUBLEV 已提交
280
        else:
T
tink2123 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()

        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
308 309 310 311 312 313 314 315 316 317 318
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
    if mode == "rec" and args.rec_algorithm == "CRNN":
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
D
Double_V 已提交
319 320 321 322
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
323
    else:
T
tink2123 已提交
324 325 326
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
327
    return output_tensors
W
WenmuZhou 已提交
328 329


L
LDOUBLEV 已提交
330
def get_infer_gpuid():
J
Jim 已提交
331 332 333 334 335
    if os.name == 'nt':
        try:
            return int(os.environ['CUDA_VISIBLE_DEVICES'].split(',')[0])
        except KeyError:
            return 0
R
ronny1996 已提交
336 337 338 339
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
340 341 342 343 344 345 346 347
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
364
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
365 366 367 368
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
369
    return src_im
L
LDOUBLEV 已提交
370 371


L
LDOUBLEV 已提交
372 373
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
374
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
375 376 377 378 379
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
380 381
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
382 383


W
WenmuZhou 已提交
384 385 386 387 388
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
389
             font_path="./doc/fonts/simfang.ttf"):
390 391 392
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
393
        image(Image|array): RGB image
394 395 396 397
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
398
        font_path: the path of font which is used to draw text
399 400 401
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
402 403
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
404 405 406 407
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
408
            continue
W
WenmuZhou 已提交
409
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
410
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
411
    if txts is not None:
L
LDOUBLEV 已提交
412
        img = np.array(resize_img(image, input_size=600))
413
        txt_img = text_visual(
W
WenmuZhou 已提交
414 415 416 417 418 419
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
420
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
421 422
        return img
    return image
423 424


W
WenmuZhou 已提交
425 426 427 428 429 430
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
431 432 433
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
434 435

    import random
L
LDOUBLEV 已提交
436

437 438 439
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
440 441 442
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
443 444
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
445
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
446 447 448 449 450 451 452 453 454 455
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
456 457
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
458
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
459 460 461
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
462 463
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
464 465 466
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
467
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
468 469
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
470 471 472 473
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
474 475 476
    return np.array(img_show)


477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
501 502 503 504 505 506
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
507 508 509 510 511 512 513
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
514
        font_path: the path of font which is used to draw text
515 516 517 518 519 520 521 522 523
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
524 525
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
526
        return blank_img, draw_txt
L
LDOUBLEV 已提交
527

528 529 530 531
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
532
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
533 534 535

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
536
    count, index = 1, 0
537 538
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
539
        if scores[idx] < threshold or math.isnan(scores[idx]):
540 541 542 543 544 545 546 547 548 549 550
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
551
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
552 553 554 555 556
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
557
            count += 1
558 559 560
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
561
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
562
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
563
        # whether add new blank img or not
L
LDOUBLEV 已提交
564
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
565 566 567
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
568
        count += 1
569 570 571 572 573 574
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
575 576


D
dyning 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
631 632 633 634 635 636 637
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():

        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
638
if __name__ == '__main__':
L
LDOUBLEV 已提交
639
    pass