test.sh 26.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2
#!/bin/bash
FILENAME=$1
M
MissPenguin 已提交
3
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
L
LDOUBLEV 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
L
LDOUBLEV 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
function func_parser_params(){
    strs=$1
    IFS=":"
    array=(${strs})
    key=${array[0]}
    tmp=${array[1]}
    IFS="|"
    res=""
    for _params in ${tmp[*]}; do
        IFS="="
        array=(${_params})
        mode=${array[0]}
        value=${array[1]}
        if [[ ${mode} = ${MODE} ]]; then
            IFS="|"
L
LDOUBLEV 已提交
52
            #echo $(func_set_params "${mode}" "${value}")
L
LDOUBLEV 已提交
53
            echo $value
L
LDOUBLEV 已提交
54 55 56 57 58 59
            break
        fi
        IFS="|"
    done
    echo ${res}
}
L
LDOUBLEV 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
L
LDOUBLEV 已提交
76 77 78 79 80
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
L
LDOUBLEV 已提交
81
epoch_num=$(func_parser_params "${lines[6]}")
L
LDOUBLEV 已提交
82 83
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
L
LDOUBLEV 已提交
84
train_batch_value=$(func_parser_params "${lines[8]}")
L
LDOUBLEV 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
L
LDOUBLEV 已提交
103
trainer_key2=$(func_parser_key "${lines[20]}")
L
LDOUBLEV 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
T
tink2123 已提交
147
# parser serving
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
trans_model_py=$(func_parser_value "${lines[67]}")
infer_model_dir_key=$(func_parser_key "${lines[68]}")
infer_model_dir_value=$(func_parser_value "${lines[68]}")
model_filename_key=$(func_parser_key "${lines[69]}")
model_filename_value=$(func_parser_value "${lines[69]}")
params_filename_key=$(func_parser_key "${lines[70]}")
params_filename_value=$(func_parser_value "${lines[70]}")
serving_server_key=$(func_parser_key "${lines[71]}")
serving_server_value=$(func_parser_value "${lines[71]}")
serving_client_key=$(func_parser_key "${lines[72]}")
serving_client_value=$(func_parser_value "${lines[72]}")
serving_dir_value=$(func_parser_value "${lines[73]}")
web_service_py=$(func_parser_value "${lines[74]}")
web_use_gpu_key=$(func_parser_key "${lines[75]}")
web_use_gpu_list=$(func_parser_value "${lines[75]}")
web_use_mkldnn_key=$(func_parser_key "${lines[76]}")
web_use_mkldnn_list=$(func_parser_value "${lines[76]}")
web_cpu_threads_key=$(func_parser_key "${lines[77]}")
web_cpu_threads_list=$(func_parser_value "${lines[77]}")
web_use_trt_key=$(func_parser_key "${lines[78]}")
web_use_trt_list=$(func_parser_value "${lines[78]}")
web_precision_key=$(func_parser_key "${lines[79]}")
web_precision_list=$(func_parser_value "${lines[79]}")
pipeline_py=$(func_parser_value "${lines[80]}")

L
LDOUBLEV 已提交
173

M
refine  
MissPenguin 已提交
174 175
if [ ${MODE} = "cpp_infer" ]; then
    # parser cpp inference model 
M
refine  
MissPenguin 已提交
176 177
    cpp_infer_model_dir_list=$(func_parser_value "${lines[53]}")
    cpp_infer_is_quant=$(func_parser_value "${lines[54]}")
M
refine  
MissPenguin 已提交
178
    # parser cpp inference 
M
refine  
MissPenguin 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    inference_cmd=$(func_parser_value "${lines[55]}")
    cpp_use_gpu_key=$(func_parser_key "${lines[56]}")
    cpp_use_gpu_list=$(func_parser_value "${lines[56]}")
    cpp_use_mkldnn_key=$(func_parser_key "${lines[57]}")
    cpp_use_mkldnn_list=$(func_parser_value "${lines[57]}")
    cpp_cpu_threads_key=$(func_parser_key "${lines[58]}")
    cpp_cpu_threads_list=$(func_parser_value "${lines[58]}")
    cpp_batch_size_key=$(func_parser_key "${lines[59]}")
    cpp_batch_size_list=$(func_parser_value "${lines[59]}")
    cpp_use_trt_key=$(func_parser_key "${lines[60]}")
    cpp_use_trt_list=$(func_parser_value "${lines[60]}")
    cpp_precision_key=$(func_parser_key "${lines[61]}")
    cpp_precision_list=$(func_parser_value "${lines[61]}")
    cpp_infer_model_key=$(func_parser_key "${lines[62]}")
    cpp_image_dir_key=$(func_parser_key "${lines[63]}")
    cpp_infer_img_dir=$(func_parser_value "${lines[63]}")
    cpp_save_log_key=$(func_parser_key "${lines[64]}")
    cpp_benchmark_key=$(func_parser_key "${lines[65]}")
    cpp_benchmark_value=$(func_parser_value "${lines[65]}")
M
refine  
MissPenguin 已提交
198
fi
M
MissPenguin 已提交
199 200


L
LDOUBLEV 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
L
LDOUBLEV 已提交
216
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
L
LDOUBLEV 已提交
217
            for use_mkldnn in ${use_mkldnn_list[*]}; do
L
LDOUBLEV 已提交
218 219 220
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
L
LDOUBLEV 已提交
221 222 223 224 225
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
L
LDOUBLEV 已提交
226 227 228
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
229
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
D
Double_V 已提交
230
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
231
                        eval $command
D
Double_V 已提交
232 233 234
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
L
LDOUBLEV 已提交
235 236 237
                    done
                done
            done
L
LDOUBLEV 已提交
238
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
L
LDOUBLEV 已提交
239 240
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
241 242 243
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
244
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
L
LDOUBLEV 已提交
245 246
                        continue
                    fi
247
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
L
LDOUBLEV 已提交
248 249 250 251 252 253
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
L
LDOUBLEV 已提交
254 255 256 257
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
L
LDOUBLEV 已提交
258 259
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
260
                        eval $command
D
Double_V 已提交
261 262 263 264
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
L
LDOUBLEV 已提交
265 266 267
                    done
                done
            done
L
LDOUBLEV 已提交
268
        else
269
            echo "Does not support hardware other than CPU and GPU Currently!"
L
LDOUBLEV 已提交
270 271 272
        fi
    done
}
T
tink2123 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
function func_serving(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    # pdserving
    set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
    set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
    set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
    set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
    set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
    trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
    eval $trans_model_cmd
    cd ${serving_dir_value}
    echo $PWD
T
tink2123 已提交
288 289
    unset https_proxy
    unset http_proxy
T
tink2123 已提交
290 291 292 293 294 295 296 297 298 299
    for use_gpu in ${web_use_gpu_list[*]}; do
        echo ${ues_gpu}
        if [ ${use_gpu} = "null" ]; then
            for use_mkldnn in ${web_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ]; then
                    continue
                fi
                for threads in ${web_cpu_threads_list[*]}; do
                      _save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
                      set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
T
tink2123 已提交
300
                      web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &"
T
tink2123 已提交
301
                      eval $web_service_cmd
T
tink2123 已提交
302 303 304 305 306 307 308 309 310 311
                      sleep 2s
                      pipeline_cmd="${python} ${pipeline_py}"
                      eval $pipeline_cmd
                      last_status=${PIPESTATUS[0]}
                      eval "cat ${_save_log_path}"
                      status_check $last_status "${pipeline_cmd}" "${status_log}"
                      PID=$!
                      kill $PID
                      sleep 2s
                      ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
T
tink2123 已提交
312 313 314 315 316 317 318 319 320 321 322
                done
            done
        elif [ ${use_gpu} = "0" ]; then
            for use_trt in ${web_use_trt_list[*]}; do
                for precision in ${web_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
T
tink2123 已提交
323
                    if [[ ${use_trt} = "Falg_quantse" || ${precision} =~ "int8" ]]; then
T
tink2123 已提交
324 325 326 327 328
                        continue
                    fi
                    _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
                    set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
                    set_precision=$(func_set_params "${web_precision_key}" "${precision}")
T
tink2123 已提交
329
                    web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & "
T
tink2123 已提交
330
                    eval $web_service_cmd
T
tink2123 已提交
331 332 333 334 335 336 337 338 339 340
                    sleep 2s
                    pipeline_cmd="${python} ${pipeline_py}"
                    eval $pipeline_cmd
                    last_status=${PIPESTATUS[0]}
                    eval "cat ${_save_log_path}"
                    status_check $last_status "${pipeline_cmd}" "${status_log}"
                    PID=$!
                    kill $PID
                    sleep 2s
                    ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
T
tink2123 已提交
341 342 343 344 345 346 347
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}
L
LDOUBLEV 已提交
348

M
MissPenguin 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
function func_cpp_inference(){
    IFS='|'
    _script=$1
    _model_dir=$2
    _log_path=$3
    _img_dir=$4
    _flag_quant=$5
    # inference 
    for use_gpu in ${cpp_use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpp_cpu_threads_list[*]}; do
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${cpp_use_trt_list[*]}; do
                for precision in ${cpp_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

L
LDOUBLEV 已提交
414
if [ ${MODE} = "infer" ]; then
L
LDOUBLEV 已提交
415 416 417 418 419 420
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
421 422 423 424 425 426 427 428 429
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
L
LDOUBLEV 已提交
430
            save_infer_dir=$(dirname $infer_model)
L
LDOUBLEV 已提交
431
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
L
LDOUBLEV 已提交
432
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
433 434 435
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
            echo ${infer_run_exports[Count]} 
            echo  $export_cmd
436 437
            eval $export_cmd
            status_export=$?
438
            status_check $status_export "${export_cmd}" "${status_log}"
L
fix  
LDOUBLEV 已提交
439
        else
L
LDOUBLEV 已提交
440
            save_infer_dir=${infer_model}
441 442 443
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
L
LDOUBLEV 已提交
444
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
445 446
        Count=$(($Count + 1))
    done
L
LDOUBLEV 已提交
447

M
MissPenguin 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
elif [ ${MODE} = "cpp_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_quant_flag=(${cpp_infer_is_quant})
    for infer_model in ${cpp_infer_model_dir_list[*]}; do
        #run inference
        is_quant=${infer_quant_flag[Count]}
        func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done
466
    
T
tink2123 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479
elif [ ${MODE} = "serving_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    #run serving
    func_serving "${web_service_cmd}"
M
MissPenguin 已提交
480

L
LDOUBLEV 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
                
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
                
                # load pretrain from norm training if current trainer is pact or fpgm trainer
                if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
                    set_pretrain="${load_norm_train_model}"
                fi

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
                elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                else     # train with multi-machine
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                fi
                # run train
                eval "unset CUDA_VISIBLE_DEVICES"
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
                # save norm trained models to set pretrain for pact training and fpgm training 
                if [ ${trainer} = ${trainer_norm} ]; then
                    load_norm_train_model=${set_eval_pretrain}
                fi
                # run eval 
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
L
LDOUBLEV 已提交
576 577 578
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
L
LDOUBLEV 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
                    func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then