det_mobilenet_v3.py 9.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr

__all__ = ['MobileNetV3']


class MobileNetV3():
    def __init__(self, params):
        """
        the MobilenetV3 backbone network for detection module.
        Args:
            params(dict): the super parameters for build network
        """
        self.scale = params['scale']
        model_name = params['model_name']
        self.inplanes = 16
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
            raise NotImplementedError("mode[" + model_name +
                                      "_model] is not implemented!")

        supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
        assert self.scale in supported_scale, \
            "supported scale are {} but input scale is {}".format(supported_scale, self.scale)

82 83
        self.disable_se = params.get('disable_se', False)
        
L
LDOUBLEV 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        cls_ch_squeeze = self.cls_ch_squeeze
        cls_ch_expand = self.cls_ch_expand
        #conv1
        conv = self.conv_bn_layer(
            input,
            filter_size=3,
            num_filters=self.make_divisible(inplanes * scale),
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
        inplanes = self.make_divisible(inplanes * scale)
        outs = []
        for layer_cfg in cfg:
            if layer_cfg[5] == 2 and i > 2:
                outs.append(conv)
            conv = self.residual_unit(
                input=conv,
                num_in_filter=inplanes,
                num_mid_filter=self.make_divisible(scale * layer_cfg[1]),
                num_out_filter=self.make_divisible(scale * layer_cfg[2]),
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
            inplanes = self.make_divisible(scale * layer_cfg[2])
            i += 1

        conv = self.conv_bn_layer(
            input=conv,
            filter_size=1,
            num_filters=self.make_divisible(scale * cls_ch_squeeze),
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv_last')
        outs.append(conv)
        return outs

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      num_groups=1,
                      if_act=True,
                      act=None,
                      name=None,
                      use_cudnn=True,
                      res_last_bn_init=False):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        bn_name = name + '_bn'
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=ParamAttr(
                name=bn_name + "_scale",
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
            bias_attr=ParamAttr(
                name=bn_name + "_offset",
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            if act == 'relu':
                bn = fluid.layers.relu(bn)
            elif act == 'hard_swish':
                bn = fluid.layers.hard_swish(bn)
        return bn

    def make_divisible(self, v, divisor=8, min_value=None):
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v

    def se_block(self, input, num_out_filter, ratio=4, name=None):
        num_mid_filter = num_out_filter // ratio
        pool = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv1 = fluid.layers.conv2d(
            input=pool,
            filter_size=1,
            num_filters=num_mid_filter,
            act='relu',
            param_attr=ParamAttr(name=name + '_1_weights'),
            bias_attr=ParamAttr(name=name + '_1_offset'))
        conv2 = fluid.layers.conv2d(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            act='hard_sigmoid',
            param_attr=ParamAttr(name=name + '_2_weights'),
            bias_attr=ParamAttr(name=name + '_2_offset'))
        scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
        return scale

    def residual_unit(self,
                      input,
                      num_in_filter,
                      num_mid_filter,
                      num_out_filter,
                      stride,
                      filter_size,
                      act=None,
                      use_se=False,
                      name=None):

        conv0 = self.conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')

        conv1 = self.conv_bn_layer(
            input=conv0,
            filter_size=filter_size,
            num_filters=num_mid_filter,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            if_act=True,
            act=act,
            num_groups=num_mid_filter,
            use_cudnn=False,
            name=name + '_depthwise')
237
        if use_se and not self.disable_se:
L
LDOUBLEV 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            conv1 = self.se_block(
                input=conv1, num_out_filter=num_mid_filter, name=name + '_se')

        conv2 = self.conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear',
            res_last_bn_init=True)
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input, y=conv2, act=None)