recognition_en.md 21.9 KB
Newer Older
1
# Text Recognition
K
Khanh Tran 已提交
2

3
- [1. Data Preparation](#DATA_PREPARATION)
A
andyjpaddle 已提交
4 5 6 7 8
  * [1.1 Costom Dataset](#Costom_Dataset)
  * [1.2 Dataset Download](#Dataset_download)
  * [1.3 Dictionary](#Dictionary)  
  * [1.4 Add Space Category](#Add_space_category)
  * [1.5 Data Augmentation](#Data_Augmentation)
9
- [2. Training](#TRAINING)
A
andyjpaddle 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
  * [2.4 Mixed Precision Training](#24-amp-training)
  * [2.5 Distributed Training](#25-distributed-training)
  * [2.6 Training with knowledge distillation](#kd)
  * [2.7 Multi-language Training](#Multi_language)
  * [2.8 Training on other platform(Windows/macOS/Linux DCU)](#28)
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#5-faq)
W
WenmuZhou 已提交
23 24

<a name="DATA_PREPARATION"></a>
25
## 1. Data Preparation
K
Khanh Tran 已提交
26

文幕地方's avatar
文幕地方 已提交
27
### 1.1 DataSet Preparation
K
Khanh Tran 已提交
28

文幕地方's avatar
文幕地方 已提交
29
To prepare datasets, refer to [ocr_datasets](./dataset/ocr_datasets.md) .
W
WenmuZhou 已提交
30

31 32
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

W
WenmuZhou 已提交
33
<a name="Dictionary"></a>
文幕地方's avatar
文幕地方 已提交
34
### 1.2 Dictionary
K
Khanh Tran 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

W
WenmuZhou 已提交
51 52
PaddleOCR has built-in dictionaries, which can be used on demand.

K
Khanh Tran 已提交
53 54
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

W
WenmuZhou 已提交
55 56 57 58
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

59
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
W
WenmuZhou 已提交
60

T
tink2123 已提交
61
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
W
WenmuZhou 已提交
62

T
tink2123 已提交
63 64
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

T
tink2123 已提交
65
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
W
WenmuZhou 已提交
66

X
xiaoting 已提交
67

W
WenmuZhou 已提交
68
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
69
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
K
Khanh Tran 已提交
70 71


T
tink2123 已提交
72
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
K
Khanh Tran 已提交
73

T
tink2123 已提交
74 75 76 77
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

W
WenmuZhou 已提交
78
<a name="Add_space_category"></a>
79
### 1.4 Add Space Category
T
tink2123 已提交
80

81
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
T
tink2123 已提交
82

T
tink2123 已提交
83
<a name="Data_Augmentation"></a>
A
andyjpaddle 已提交
84
### 1.5 Data Augmentation
T
tink2123 已提交
85 86 87 88 89 90 91

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

A
andyjpaddle 已提交
92 93
<a name="TRAINING"></a>
## 2.Training
T
tink2123 已提交
94

K
Khanh Tran 已提交
95 96
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

A
andyjpaddle 已提交
97 98 99
<a name="21-start-training"></a>
### 2.1 Start Training

K
Khanh Tran 已提交
100 101 102 103 104
First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
T
tink2123 已提交
105
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
K
Khanh Tran 已提交
106 107
# Decompress model parameters
cd pretrain_models
T
tink2123 已提交
108
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
K
Khanh Tran 已提交
109 110 111 112 113
```

Start training:

```
T
tink2123 已提交
114
# GPU training Support single card and multi-card training
T
tink2123 已提交
115
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
T
tink2123 已提交
116 117 118 119

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
120
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
K
Khanh Tran 已提交
121
```
T
tink2123 已提交
122 123


K
Khanh Tran 已提交
124 125 126 127 128 129 130 131 132
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
133 134
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
135
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
W
WenmuZhou 已提交
136
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
137 138 139 140 141
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
L
LDOUBLEV 已提交
142 143
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
T
tink2123 已提交
144
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
T
Topdu 已提交
145
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
A
andyjpaddle 已提交
146
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
K
Khanh Tran 已提交
147 148


W
WenmuZhou 已提交
149
For training Chinese data, it is recommended to use
150
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
K
Khanh Tran 已提交
151
co
152
Take `rec_chinese_lite_train_v2.0.yml` as an example:
K
Khanh Tran 已提交
153 154 155
```
Global:
  ...
156 157
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
K
Khanh Tran 已提交
158 159
  # Modify character type
  ...
160
  # Whether to recognize spaces
161
  use_space_char: True
K
Khanh Tran 已提交
162

163 164 165 166

Optimizer:
  ...
  # Add learning rate decay strategy
167 168 169 170 171 172 173 174 175
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
M
MissPenguin 已提交
176
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
M
MissPenguin 已提交
196
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
K
Khanh Tran 已提交
212 213 214
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

A
andyjpaddle 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
<a name="22-load-trained-model-and-continue-training"></a>
### 2.2 Load Trained Model and Continue Training

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

For example:
```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.

<a name="23-training-with-new-backbone"></a>
### 2.3 Training with New Backbone

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

<a name="24-amp-training"></a>
### 2.4 Mixed Precision Training

If you want to speed up your training further, you can use [Auto Mixed Precision Training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), taking a single machine and a single gpu as an example, the commands are as follows:

```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
 ```

<a name="25-distributed-training"></a>
### 2.5 Distributed Training

During multi-machine multi-gpu training, use the `--ips` parameter to set the used machine IP address, and the `--gpus` parameter to set the used GPU ID:

```bash
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train
```

**Note:** When using multi-machine and multi-gpu training, you need to replace the ips value in the above command with the address of your machine, and the machines need to be able to ping each other. In addition, training needs to be launched separately on multiple machines. The command to view the ip address of the machine is `ifconfig`.

<a name="kd"></a>
### 2.6 Training with Knowledge Distillation

Knowledge distillation is supported in PaddleOCR for text recognition training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

W
WenmuZhou 已提交
306
<a name="Multi_language"></a>
A
andyjpaddle 已提交
307
### 2.7 Multi-language Training
T
tink2123 已提交
308 309 310

Currently, the multi-language algorithms supported by PaddleOCR are:

T
tink2123 已提交
311 312 313 314 315 316 317 318 319 320 321 322
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
T
tink2123 已提交
323

T
tink2123 已提交
324
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
W
WenmuZhou 已提交
325 326 327 328 329 330 331 332 333


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
334
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
W
WenmuZhou 已提交
335 336
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
337
  # Whether to recognize spaces
338
  use_space_char: True
339

W
WenmuZhou 已提交
340
...
341 342 343

Train:
  dataset:
M
MissPenguin 已提交
344
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
345 346 347 348 349 350 351 352 353
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
M
MissPenguin 已提交
354
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
355 356 357 358 359 360
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
W
WenmuZhou 已提交
361
```
K
Khanh Tran 已提交
362

A
andyjpaddle 已提交
363 364
<a name="28"></a>
### 2.8 Training on other platform(Windows/macOS/Linux DCU
365

A
andyjpaddle 已提交
366 367 368 369
- Windows GPU/CPU
The Windows platform is slightly different from the Linux platform:
Windows platform only supports `single gpu` training and inference, specify GPU for training `set CUDA_VISIBLE_DEVICES=0`
On the Windows platform, DataLoader only supports single-process mode, so you need to set `num_workers` to 0;
370

A
andyjpaddle 已提交
371 372
- macOS
GPU mode is not supported, you need to set `use_gpu` to False in the configuration file, and the rest of the training evaluation prediction commands are exactly the same as Linux GPU.
373

A
andyjpaddle 已提交
374 375
- Linux DCU
Running on a DCU device requires setting the environment variable `export HIP_VISIBLE_DEVICES=0,1,2,3`, and the rest of the training and evaluation prediction commands are exactly the same as the Linux GPU.
376

A
andyjpaddle 已提交
377 378
<a name="3-evaluation-and-test"></a>
## 3. Evaluation and Test
K
Khanh Tran 已提交
379

A
andyjpaddle 已提交
380 381 382 383
<a name="31-evaluation"></a>
### 3.1 Evaluation

The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
K
Khanh Tran 已提交
384 385 386

```
# GPU evaluation, Global.checkpoints is the weight to be tested
W
WenmuZhou 已提交
387
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
K
Khanh Tran 已提交
388 389
```

A
andyjpaddle 已提交
390 391
<a name="32-test"></a>
### 3.2 Test
K
Khanh Tran 已提交
392 393 394 395


Using the model trained by paddleocr, you can quickly get prediction through the following script.

T
tink2123 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
K
Khanh Tran 已提交
417 418 419

```
# Predict English results
W
WenmuZhou 已提交
420
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
K
Khanh Tran 已提交
421 422
```

T
tink2123 已提交
423

K
Khanh Tran 已提交
424 425
Input image:

426
![](../imgs_words/en/word_1.png)
K
Khanh Tran 已提交
427 428 429 430 431

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
T
tink2123 已提交
432
        result: ('joint', 0.9998967)
K
Khanh Tran 已提交
433 434
```

435
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
K
Khanh Tran 已提交
436 437 438

```
# Predict Chinese results
W
WenmuZhou 已提交
439
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
K
Khanh Tran 已提交
440 441 442 443
```

Input image:

444
![](../imgs_words/ch/word_1.jpg)
K
Khanh Tran 已提交
445 446 447 448 449

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
T
tink2123 已提交
450
        result: ('韩国小馆', 0.997218)
K
Khanh Tran 已提交
451
```
452

A
andyjpaddle 已提交
453 454 455 456 457 458
<a name="4-inference"></a>
## 4. Inference

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
459

A
andyjpaddle 已提交
460
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
A
andyjpaddle 已提交
478
inference/rec_crnn/
479 480 481 482 483 484 485
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

文幕地方's avatar
文幕地方 已提交
486
  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`
487 488

  ```
文幕地方's avatar
文幕地方 已提交
489
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
490
  ```
A
andyjpaddle 已提交
491 492 493 494 495 496 497

<a name="5-faq"></a>
## 5. FAQ

Q1: After the training model is transferred to the inference model, the prediction effect is inconsistent?

**A**: There are many such problems, and the problems are mostly caused by inconsistent preprocessing and postprocessing parameters when the trained model predicts and the preprocessing and postprocessing parameters when the inference model predicts. You can compare whether there are differences in preprocessing, postprocessing, and prediction in the configuration files used for training.