infer_table.py 4.4 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys
import json

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
27
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
M
MissPenguin 已提交
28 29 30 31 32 33 34 35 36

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import paddle
from paddle.jit import to_static

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
37
from ppocr.utils.save_load import load_model
M
MissPenguin 已提交
38 39 40 41
from ppocr.utils.utility import get_image_file_list
import tools.program as program
import cv2

42

文幕地方's avatar
文幕地方 已提交
43
@paddle.no_grad()
M
MissPenguin 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
def main(config, device, logger, vdl_writer):
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    if hasattr(post_process_class, 'character'):
        config['Architecture']["Head"]['out_channels'] = len(
            getattr(post_process_class, 'character'))

    model = build_model(config['Architecture'])
文幕地方's avatar
文幕地方 已提交
57 58
    algorithm = config['Architecture']['algorithm']
    use_xywh = algorithm in ['TableMaster']
M
MissPenguin 已提交
59

60
    load_model(config, model)
M
MissPenguin 已提交
61 62 63 64 65

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
文幕地方's avatar
文幕地方 已提交
66
        if 'Encode' in op_name:
M
MissPenguin 已提交
67 68
            continue
        if op_name == 'KeepKeys':
文幕地方's avatar
文幕地方 已提交
69
            op[op_name]['keep_keys'] = ['image', 'shape']
M
MissPenguin 已提交
70 71 72 73 74
        transforms.append(op)

    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

文幕地方's avatar
文幕地方 已提交
75 76 77
    save_res_path = config['Global']['save_res_path']
    os.makedirs(save_res_path, exist_ok=True)

M
MissPenguin 已提交
78
    model.eval()
文幕地方's avatar
文幕地方 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    with open(
            os.path.join(save_res_path, 'infer.txt'), mode='w',
            encoding='utf-8') as f_w:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)

            images = paddle.to_tensor(images)
            preds = model(images)
            post_result = post_process_class(preds, [shape_list])

            structure_str_list = post_result['structure_batch_list'][0]
            bbox_list = post_result['bbox_batch_list'][0]
            structure_str_list = structure_str_list[0]
            structure_str_list = [
                '<html>', '<body>', '<table>'
            ] + structure_str_list + ['</table>', '</body>', '</html>']
            bbox_list_str = json.dumps(bbox_list.tolist())

            logger.info("result: {}, {}".format(structure_str_list,
                                                bbox_list_str))
            f_w.write("result: {}, {}\n".format(structure_str_list,
                                                bbox_list_str))

            img = draw_rectangle(file, bbox_list, use_xywh)
            cv2.imwrite(
                os.path.join(save_res_path, os.path.basename(file)), img)
        logger.info("success!")


def draw_rectangle(img_path, boxes, use_xywh=False):
    img = cv2.imread(img_path)
    img_show = img.copy()
    for box in boxes.astype(int):
        if use_xywh:
            x, y, w, h = box
            x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2
        else:
            x1, y1, x2, y2 = box
        cv2.rectangle(img_show, (x1, y1), (x2, y2), (255, 0, 0), 2)
    return img_show
M
MissPenguin 已提交
125 126 127 128 129


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main(config, device, logger, vdl_writer)