table_master_head.py 10.0 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
文幕地方's avatar
add ref  
文幕地方 已提交
14 15 16 17 18
"""
This fun code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/decoders/master_decoder.py
"""

文幕地方's avatar
文幕地方 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import copy
import math
import paddle
from paddle import nn
from paddle.nn import functional as F


class TableMasterHead(nn.Layer):
    """
    Split to two transformer header at the last layer.
    Cls_layer is used to structure token classification.
    Bbox_layer is used to regress bbox coord.
    """

    def __init__(self,
                 in_channels,
                 out_channels=30,
                 headers=8,
                 d_ff=2048,
                 dropout=0,
                 max_text_length=500,
40
                 point_num=2,
文幕地方's avatar
文幕地方 已提交
41 42 43 44 45 46 47 48 49 50 51 52
                 **kwargs):
        super(TableMasterHead, self).__init__()
        hidden_size = in_channels[-1]
        self.layers = clones(
            DecoderLayer(headers, hidden_size, dropout, d_ff), 2)
        self.cls_layer = clones(
            DecoderLayer(headers, hidden_size, dropout, d_ff), 1)
        self.bbox_layer = clones(
            DecoderLayer(headers, hidden_size, dropout, d_ff), 1)
        self.cls_fc = nn.Linear(hidden_size, out_channels)
        self.bbox_fc = nn.Sequential(
            # nn.Linear(hidden_size, hidden_size),
53
            nn.Linear(hidden_size, point_num * 2),
文幕地方's avatar
文幕地方 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            nn.Sigmoid())
        self.norm = nn.LayerNorm(hidden_size)
        self.embedding = Embeddings(d_model=hidden_size, vocab=out_channels)
        self.positional_encoding = PositionalEncoding(d_model=hidden_size)

        self.SOS = out_channels - 3
        self.PAD = out_channels - 1
        self.out_channels = out_channels
        self.point_num = point_num
        self.max_text_length = max_text_length

    def make_mask(self, tgt):
        """
        Make mask for self attention.
        :param src: [b, c, h, l_src]
        :param tgt: [b, l_tgt]
        :return:
        """
        trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3)

        tgt_len = paddle.shape(tgt)[1]
        trg_sub_mask = paddle.tril(
            paddle.ones(
                ([tgt_len, tgt_len]), dtype=paddle.float32))

        tgt_mask = paddle.logical_and(
            trg_pad_mask.astype(paddle.float32), trg_sub_mask)
        return tgt_mask.astype(paddle.float32)

    def decode(self, input, feature, src_mask, tgt_mask):
        # main process of transformer decoder.
        x = self.embedding(input)  # x: 1*x*512, feature: 1*3600,512
        x = self.positional_encoding(x)

        # origin transformer layers
        for i, layer in enumerate(self.layers):
            x = layer(x, feature, src_mask, tgt_mask)

        # cls head
        for layer in self.cls_layer:
            cls_x = layer(x, feature, src_mask, tgt_mask)
        cls_x = self.norm(cls_x)

        # bbox head
        for layer in self.bbox_layer:
            bbox_x = layer(x, feature, src_mask, tgt_mask)
        bbox_x = self.norm(bbox_x)
        return self.cls_fc(cls_x), self.bbox_fc(bbox_x)

    def greedy_forward(self, SOS, feature):
        input = SOS
        output = paddle.zeros(
            [input.shape[0], self.max_text_length + 1, self.out_channels])
        bbox_output = paddle.zeros(
108
            [input.shape[0], self.max_text_length + 1, self.point_num * 2])
文幕地方's avatar
文幕地方 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        max_text_length = paddle.to_tensor(self.max_text_length)
        for i in range(max_text_length + 1):
            target_mask = self.make_mask(input)
            out_step, bbox_output_step = self.decode(input, feature, None,
                                                     target_mask)
            prob = F.softmax(out_step, axis=-1)
            next_word = prob.argmax(axis=2, dtype="int64")
            input = paddle.concat(
                [input, next_word[:, -1].unsqueeze(-1)], axis=1)
            if i == self.max_text_length:
                output = out_step
                bbox_output = bbox_output_step
        return output, bbox_output

    def forward_train(self, out_enc, targets):
        # x is token of label
        # feat is feature after backbone before pe.
        # out_enc is feature after pe.
        padded_targets = targets[0]
        src_mask = None
        tgt_mask = self.make_mask(padded_targets[:, :-1])
        output, bbox_output = self.decode(padded_targets[:, :-1], out_enc,
                                          src_mask, tgt_mask)
        return {'structure_probs': output, 'loc_preds': bbox_output}

    def forward_test(self, out_enc):
        batch_size = out_enc.shape[0]
        SOS = paddle.zeros([batch_size, 1], dtype='int64') + self.SOS
        output, bbox_output = self.greedy_forward(SOS, out_enc)
        # output = F.softmax(output)
        return {'structure_probs': output, 'loc_preds': bbox_output}

    def forward(self, feat, targets=None):
        feat = feat[-1]
        b, c, h, w = feat.shape
        feat = feat.reshape([b, c, h * w])  # flatten 2D feature map
        feat = feat.transpose((0, 2, 1))
        out_enc = self.positional_encoding(feat)
        if self.training:
            return self.forward_train(out_enc, targets)

        return self.forward_test(out_enc)


class DecoderLayer(nn.Layer):
    """
    Decoder is made of self attention, srouce attention and feed forward.
    """

    def __init__(self, headers, d_model, dropout, d_ff):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(headers, d_model, dropout)
        self.src_attn = MultiHeadAttention(headers, d_model, dropout)
        self.feed_forward = FeedForward(d_model, d_ff, dropout)
        self.sublayer = clones(SubLayerConnection(d_model, dropout), 3)

    def forward(self, x, feature, src_mask, tgt_mask):
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](
            x, lambda x: self.src_attn(x, feature, feature, src_mask))
        return self.sublayer[2](x, self.feed_forward)


class MultiHeadAttention(nn.Layer):
    def __init__(self, headers, d_model, dropout):
        super(MultiHeadAttention, self).__init__()

        assert d_model % headers == 0
        self.d_k = int(d_model / headers)
        self.headers = headers
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(dropout)

    def forward(self, query, key, value, mask=None):
        B = query.shape[0]

        # 1) Do all the linear projections in batch from d_model => h x d_k
        query, key, value = \
            [l(x).reshape([B, 0, self.headers, self.d_k]).transpose([0, 2, 1, 3])
             for l, x in zip(self.linears, (query, key, value))]
        # 2) Apply attention on all the projected vectors in batch
        x, self.attn = self_attention(
            query, key, value, mask=mask, dropout=self.dropout)
        x = x.transpose([0, 2, 1, 3]).reshape([B, 0, self.headers * self.d_k])
        return self.linears[-1](x)


class FeedForward(nn.Layer):
    def __init__(self, d_model, d_ff, dropout):
        super(FeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))


class SubLayerConnection(nn.Layer):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """

    def __init__(self, size, dropout):
        super(SubLayerConnection, self).__init__()
        self.norm = nn.LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        return x + self.dropout(sublayer(self.norm(x)))


def masked_fill(x, mask, value):
    mask = mask.astype(x.dtype)
    return x * paddle.logical_not(mask).astype(x.dtype) + mask * value


def self_attention(query, key, value, mask=None, dropout=None):
    """
    Compute 'Scale Dot Product Attention'
    """
    d_k = value.shape[-1]

    score = paddle.matmul(query, key.transpose([0, 1, 3, 2]) / math.sqrt(d_k))
    if mask is not None:
        # score = score.masked_fill(mask == 0, -1e9) # b, h, L, L
        score = masked_fill(score, mask == 0, -6.55e4)  # for fp16

    p_attn = F.softmax(score, axis=-1)

    if dropout is not None:
        p_attn = dropout(p_attn)
    return paddle.matmul(p_attn, value), p_attn


def clones(module, N):
    """ Produce N identical layers """
    return nn.LayerList([copy.deepcopy(module) for _ in range(N)])


class Embeddings(nn.Layer):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, *input):
        x = input[0]
        return self.lut(x) * math.sqrt(self.d_model)


class PositionalEncoding(nn.Layer):
    """ Implement the PE function. """

    def __init__(self, d_model, dropout=0., max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        # Compute the positional encodings once in log space.
        pe = paddle.zeros([max_len, d_model])
        position = paddle.arange(0, max_len).unsqueeze(1).astype('float32')
        div_term = paddle.exp(
            paddle.arange(0, d_model, 2) * -math.log(10000.0) / d_model)
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, feat, **kwargs):
        feat = feat + self.pe[:, :paddle.shape(feat)[1]]  # pe 1*5000*512
        return self.dropout(feat)