rec_model.py 9.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
from collections import OrderedDict

L
LDOUBLEV 已提交
21 22 23 24 25 26 27 28 29
from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
T
tink2123 已提交
30 31 32 33 34 35
    """
    Rec model architecture
    Args:
        params(object): Params from yaml file and settings from command line
    """

L
LDOUBLEV 已提交
36 37 38 39 40
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
T
tink2123 已提交
41
        self.char_type = global_params['character_type']
T
tink2123 已提交
42
        self.infer_img = global_params['infer_img']
L
LDOUBLEV 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
T
fix bug  
tink2123 已提交
69
        if "num_heads" in global_params:
T
tink2123 已提交
70 71 72
            self.num_heads = global_params["num_heads"]
        else:
            self.num_heads = None
L
LDOUBLEV 已提交
73 74

    def create_feed(self, mode):
T
tink2123 已提交
75 76 77 78 79 80
        """
        Create feed dict and DataLoader object
        Args:
            mode(str): runtime mode, can be "train", "eval" or "test"
        Return: image, labels, loader
        """
L
LDOUBLEV 已提交
81 82 83
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
T
tink2123 已提交
84
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
B
baiyfbupt 已提交
85
            image.stop_gradient = False
L
LDOUBLEV 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
T
tink2123 已提交
99
            elif self.loss_type == "srn":
T
tink2123 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
116 117
                    ],
                    dtype="float32")
T
tink2123 已提交
118 119 120 121 122
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
123 124
                    ],
                    dtype="float32")
T
tink2123 已提交
125 126
                lbl_weight = fluid.layers.data(
                    name="lbl_weight", shape=[-1, 1], dtype='int64')
T
tink2123 已提交
127 128
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
T
tink2123 已提交
129 130 131 132 133 134 135 136 137 138 139 140
                feed_list = [
                    image, label, encoder_word_pos, gsrm_word_pos,
                    gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
                ]
                labels = {
                    'label': label,
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
                    'lbl_weight': lbl_weight
                }
L
LDOUBLEV 已提交
141 142 143 144 145 146 147 148 149 150 151
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
T
tink2123 已提交
152 153
            labels = None
            loader = None
T
tink2123 已提交
154
            if self.char_type == "ch" and self.infer_img and self.loss_type != "srn":
T
tink2123 已提交
155 156 157 158 159
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
T
tink2123 已提交
160
                        "We set img_shape to be the same , it may affect the inference effect"
T
tink2123 已提交
161
                    )
T
tink2123 已提交
162
                    image_shape = deepcopy(self.image_shape)
163
                    image_shape.insert(0, -1)
T
tink2123 已提交
164
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
B
baiyfbupt 已提交
165
            image.stop_gradient = False
T
tink2123 已提交
166
            if self.loss_type == "srn":
T
tink2123 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
183 184
                    ],
                    dtype="float32")
T
tink2123 已提交
185 186 187 188 189
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
T
tink2123 已提交
190 191
                    ],
                    dtype="float32")
T
tink2123 已提交
192 193 194 195 196 197
                labels = {
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
                }
T
tink2123 已提交
198

L
LDOUBLEV 已提交
199 200 201 202 203 204 205 206
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
T
tink2123 已提交
207
        # backbone
L
LDOUBLEV 已提交
208
        conv_feas = self.backbone(inputs)
T
tink2123 已提交
209
        # predict
L
LDOUBLEV 已提交
210 211
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
T
tink2123 已提交
212
        # loss
L
LDOUBLEV 已提交
213 214 215 216 217 218
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
T
tink2123 已提交
219 220
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
221 222 223 224 225
                outputs = OrderedDict([('total_loss', total_loss), 
                                       ('img_loss', img_loss), 
                                       ('word_loss', word_loss), 
                                       ('decoded_out', decoded_out),
                                       ('label', label)])
T
tink2123 已提交
226
            else:
227 228 229
                outputs = OrderedDict([('total_loss', loss), 
                                       ('decoded_out', decoded_out),
                                       ('label', label)])
L
LDOUBLEV 已提交
230
            return loader, outputs
T
tink2123 已提交
231
        # export_model
L
LDOUBLEV 已提交
232
        elif mode == "export":
L
LDOUBLEV 已提交
233
            predict = predicts['predict']
D
dyning 已提交
234 235
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
T
tink2123 已提交
236
            if self.loss_type == "srn":
T
tink2123 已提交
237
                return [
238 239
                    image, labels, OrderedDict([('decoded_out', decoded_out), 
                                                ('predicts', predict)])]
T
tink2123 已提交
240

241 242
            return [image, OrderedDict([('decoded_out', decoded_out), 
                                        ('predicts', predict)])]
T
tink2123 已提交
243
        # eval or test
L
LDOUBLEV 已提交
244
        else:
D
dyning 已提交
245 246 247
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
248 249
            return loader, OrderedDict([('decoded_out', decoded_out), 
                                        ('predicts', predict)])