rec_nrtr_optim_head.py 33.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
Topdu 已提交
15 16 17
import math
import paddle
import copy
18
from paddle import nn
T
Topdu 已提交
19 20 21 22 23 24 25 26 27 28 29 30
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
from ppocr.modeling.heads.multiheadAttention import MultiheadAttentionOptim
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)

31

T
Topdu 已提交
32
class TransformerOptim(nn.Layer):
33
    """A transformer model. User is able to modify the attributes as needed. The architechture
T
Topdu 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
    Processing Systems, pages 6000-6010.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).

    """

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_encoder_layers=6,
                 beam_size=0,
                 num_decoder_layers=6,
                 dim_feedforward=1024,
                 attention_dropout_rate=0.0,
                 residual_dropout_rate=0.1,
                 custom_encoder=None,
                 custom_decoder=None,
                 in_channels=0,
                 out_channels=0,
                 dst_vocab_size=99,
                 scale_embedding=True):
T
Topdu 已提交
66 67 68 69 70
        super(TransformerOptim, self).__init__()
        self.embedding = Embeddings(
            d_model=d_model,
            vocab=dst_vocab_size,
            padding_idx=0,
71
            scale_embedding=scale_embedding)
T
Topdu 已提交
72 73
        self.positional_encoding = PositionalEncoding(
            dropout=residual_dropout_rate,
74
            dim=d_model, )
T
Topdu 已提交
75 76 77
        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
78 79 80 81 82 83
            if num_encoder_layers > 0:
                encoder_layer = TransformerEncoderLayer(
                    d_model, nhead, dim_feedforward, attention_dropout_rate,
                    residual_dropout_rate)
                self.encoder = TransformerEncoder(encoder_layer,
                                                  num_encoder_layers)
T
Topdu 已提交
84 85 86 87 88 89
            else:
                self.encoder = None

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
90 91 92
            decoder_layer = TransformerDecoderLayer(
                d_model, nhead, dim_feedforward, attention_dropout_rate,
                residual_dropout_rate)
T
Topdu 已提交
93 94 95 96 97 98 99
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)

        self._reset_parameters()
        self.beam_size = beam_size
        self.d_model = d_model
        self.nhead = nhead
        self.tgt_word_prj = nn.Linear(d_model, dst_vocab_size, bias_attr=False)
100 101
        w0 = np.random.normal(0.0, d_model**-0.5,
                              (d_model, dst_vocab_size)).astype(np.float32)
T
Topdu 已提交
102 103 104 105
        self.tgt_word_prj.weight.set_value(w0)
        self.apply(self._init_weights)

    def _init_weights(self, m):
106

T
Topdu 已提交
107 108 109 110 111
        if isinstance(m, nn.Conv2D):
            xavier_normal_(m.weight)
            if m.bias is not None:
                zeros_(m.bias)

112 113
    def forward_train(self, src, tgt):
        tgt = tgt[:, :-1]
T
Topdu 已提交
114

115 116 117 118
        tgt_key_padding_mask = self.generate_padding_mask(tgt)
        tgt = self.embedding(tgt).transpose([1, 0, 2])
        tgt = self.positional_encoding(tgt)
        tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
T
Topdu 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        if self.encoder is not None:
            src = self.positional_encoding(src.transpose([1, 0, 2]))
            memory = self.encoder(src)
        else:
            memory = src.squeeze(2).transpose([2, 0, 1])
        output = self.decoder(
            tgt,
            memory,
            tgt_mask=tgt_mask,
            memory_mask=None,
            tgt_key_padding_mask=tgt_key_padding_mask,
            memory_key_padding_mask=None)
        output = output.transpose([1, 0, 2])
        logit = self.tgt_word_prj(output)
        return logit

    def forward(self, src, targets=None):
        """Take in and process masked source/target sequences.
T
Topdu 已提交
138 139 140 141 142 143 144
        Args:
            src: the sequence to the encoder (required).
            tgt: the sequence to the decoder (required).
        Shape:
            - src: :math:`(S, N, E)`.
            - tgt: :math:`(T, N, E)`.
        Examples:
145
            >>> output = transformer_model(src, tgt)
T
Topdu 已提交
146
        """
147 148 149 150

        if self.training:
            max_len = targets[1].max()
            tgt = targets[0][:, :2 + max_len]
T
Topdu 已提交
151 152
            return self.forward_train(src, tgt)
        else:
153
            if self.beam_size > 0:
T
Topdu 已提交
154 155 156 157 158 159
                return self.forward_beam(src)
            else:
                return self.forward_test(src)

    def forward_test(self, src):
        bs = src.shape[0]
160
        if self.encoder is not None:
T
Topdu 已提交
161 162 163 164
            src = self.positional_encoding(src.transpose([1, 0, 2]))
            memory = self.encoder(src)
        else:
            memory = src.squeeze(2).transpose([2, 0, 1])
165
        dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)
T
Topdu 已提交
166 167 168 169 170
        for len_dec_seq in range(1, 25):
            src_enc = memory.clone()
            tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
            dec_seq_embed = self.embedding(dec_seq).transpose([1, 0, 2])
            dec_seq_embed = self.positional_encoding(dec_seq_embed)
171 172 173 174 175 176 177 178 179
            tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[
                0])
            output = self.decoder(
                dec_seq_embed,
                src_enc,
                tgt_mask=tgt_mask,
                memory_mask=None,
                tgt_key_padding_mask=tgt_key_padding_mask,
                memory_key_padding_mask=None)
T
Topdu 已提交
180
            dec_output = output.transpose([1, 0, 2])
181 182 183

            dec_output = dec_output[:,
                                    -1, :]  # Pick the last step: (bh * bm) * d_h
T
Topdu 已提交
184 185 186
            word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
            word_prob = word_prob.reshape([1, bs, -1])
            preds_idx = word_prob.argmax(axis=2)
187 188 189 190 191

            if paddle.equal_all(
                    preds_idx[-1],
                    paddle.full(
                        preds_idx[-1].shape, 3, dtype='int64')):
T
Topdu 已提交
192 193 194
                break

            preds_prob = word_prob.max(axis=2)
195 196
            dec_seq = paddle.concat(
                [dec_seq, preds_idx.reshape([-1, 1])], axis=1)
T
Topdu 已提交
197

198
        return dec_seq
T
Topdu 已提交
199

200
    def forward_beam(self, images):
T
Topdu 已提交
201 202 203 204
        ''' Translation work in one batch '''

        def get_inst_idx_to_tensor_position_map(inst_idx_list):
            ''' Indicate the position of an instance in a tensor. '''
205 206 207 208
            return {
                inst_idx: tensor_position
                for tensor_position, inst_idx in enumerate(inst_idx_list)
            }
T
Topdu 已提交
209

210 211
        def collect_active_part(beamed_tensor, curr_active_inst_idx,
                                n_prev_active_inst, n_bm):
T
Topdu 已提交
212 213 214 215 216 217
            ''' Collect tensor parts associated to active instances. '''

            _, *d_hs = beamed_tensor.shape
            n_curr_active_inst = len(curr_active_inst_idx)
            new_shape = (n_curr_active_inst * n_bm, *d_hs)

218
            beamed_tensor = beamed_tensor.reshape(
T
topduke 已提交
219
                [n_prev_active_inst, -1])
220 221
            beamed_tensor = beamed_tensor.index_select(
                paddle.to_tensor(curr_active_inst_idx), axis=0)
T
Topdu 已提交
222 223 224 225
            beamed_tensor = beamed_tensor.reshape([*new_shape])

            return beamed_tensor

226 227
        def collate_active_info(src_enc, inst_idx_to_position_map,
                                active_inst_idx_list):
T
Topdu 已提交
228 229
            # Sentences which are still active are collected,
            # so the decoder will not run on completed sentences.
230

T
Topdu 已提交
231
            n_prev_active_inst = len(inst_idx_to_position_map)
232 233 234
            active_inst_idx = [
                inst_idx_to_position_map[k] for k in active_inst_idx_list
            ]
T
Topdu 已提交
235
            active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
236 237 238 239 240
            active_src_enc = collect_active_part(
                src_enc.transpose([1, 0, 2]), active_inst_idx,
                n_prev_active_inst, n_bm).transpose([1, 0, 2])
            active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
                active_inst_idx_list)
T
Topdu 已提交
241 242
            return active_src_enc, active_inst_idx_to_position_map

243 244 245
        def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output,
                             inst_idx_to_position_map, n_bm,
                             memory_key_padding_mask):
T
Topdu 已提交
246 247 248
            ''' Decode and update beam status, and then return active beam idx '''

            def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
249 250 251
                dec_partial_seq = [
                    b.get_current_state() for b in inst_dec_beams if not b.done
                ]
T
Topdu 已提交
252
                dec_partial_seq = paddle.stack(dec_partial_seq)
253

T
Topdu 已提交
254 255 256
                dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
                return dec_partial_seq

257 258
            def prepare_beam_memory_key_padding_mask(
                    inst_dec_beams, memory_key_padding_mask, n_bm):
T
Topdu 已提交
259 260 261 262
                keep = []
                for idx in (memory_key_padding_mask):
                    if not inst_dec_beams[idx].done:
                        keep.append(idx)
263 264
                memory_key_padding_mask = memory_key_padding_mask[
                    paddle.to_tensor(keep)]
T
Topdu 已提交
265 266
                len_s = memory_key_padding_mask.shape[-1]
                n_inst = memory_key_padding_mask.shape[0]
267 268 269 270
                memory_key_padding_mask = paddle.concat(
                    [memory_key_padding_mask for i in range(n_bm)], axis=1)
                memory_key_padding_mask = memory_key_padding_mask.reshape(
                    [n_inst * n_bm, len_s])  #repeat(1, n_bm)
T
Topdu 已提交
271 272
                return memory_key_padding_mask

273 274
            def predict_word(dec_seq, enc_output, n_active_inst, n_bm,
                             memory_key_padding_mask):
T
Topdu 已提交
275 276 277
                tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
                dec_seq = self.embedding(dec_seq).transpose([1, 0, 2])
                dec_seq = self.positional_encoding(dec_seq)
278 279
                tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[
                    0])
T
Topdu 已提交
280
                dec_output = self.decoder(
281 282
                    dec_seq,
                    enc_output,
T
Topdu 已提交
283 284 285 286
                    tgt_mask=tgt_mask,
                    tgt_key_padding_mask=tgt_key_padding_mask,
                    memory_key_padding_mask=memory_key_padding_mask,
                ).transpose([1, 0, 2])
287 288
                dec_output = dec_output[:,
                                        -1, :]  # Pick the last step: (bh * bm) * d_h
T
Topdu 已提交
289 290 291 292
                word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
                word_prob = word_prob.reshape([n_active_inst, n_bm, -1])
                return word_prob

293 294
            def collect_active_inst_idx_list(inst_beams, word_prob,
                                             inst_idx_to_position_map):
T
Topdu 已提交
295 296
                active_inst_idx_list = []
                for inst_idx, inst_position in inst_idx_to_position_map.items():
297 298
                    is_inst_complete = inst_beams[inst_idx].advance(word_prob[
                        inst_position])
T
Topdu 已提交
299 300 301 302 303 304 305 306
                    if not is_inst_complete:
                        active_inst_idx_list += [inst_idx]

                return active_inst_idx_list

            n_active_inst = len(inst_idx_to_position_map)
            dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
            memory_key_padding_mask = None
307 308
            word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm,
                                     memory_key_padding_mask)
T
Topdu 已提交
309 310 311 312 313 314 315 316 317 318
            # Update the beam with predicted word prob information and collect incomplete instances
            active_inst_idx_list = collect_active_inst_idx_list(
                inst_dec_beams, word_prob, inst_idx_to_position_map)
            return active_inst_idx_list

        def collect_hypothesis_and_scores(inst_dec_beams, n_best):
            all_hyp, all_scores = [], []
            for inst_idx in range(len(inst_dec_beams)):
                scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
                all_scores += [scores[:n_best]]
319 320 321 322
                hyps = [
                    inst_dec_beams[inst_idx].get_hypothesis(i)
                    for i in tail_idxs[:n_best]
                ]
T
Topdu 已提交
323 324 325 326 327
                all_hyp += [hyps]
            return all_hyp, all_scores

        with paddle.no_grad():
            #-- Encode
328 329

            if self.encoder is not None:
T
Topdu 已提交
330 331 332 333 334 335 336 337
                src = self.positional_encoding(images.transpose([1, 0, 2]))
                src_enc = self.encoder(src).transpose([1, 0, 2])
            else:
                src_enc = images.squeeze(2).transpose([0, 2, 1])

            #-- Repeat data for beam search
            n_bm = self.beam_size
            n_inst, len_s, d_h = src_enc.shape
338 339
            src_enc = paddle.concat([src_enc for i in range(n_bm)], axis=1)
            src_enc = src_enc.reshape([n_inst * n_bm, len_s, d_h]).transpose(
T
topduke 已提交
340
                [1, 0, 2])
T
Topdu 已提交
341 342 343 344 345
            #-- Prepare beams
            inst_dec_beams = [Beam(n_bm) for _ in range(n_inst)]

            #-- Bookkeeping for active or not
            active_inst_idx_list = list(range(n_inst))
346 347
            inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
                active_inst_idx_list)
T
Topdu 已提交
348 349 350 351
            #-- Decode
            for len_dec_seq in range(1, 25):
                src_enc_copy = src_enc.clone()
                active_inst_idx_list = beam_decode_step(
352 353
                    inst_dec_beams, len_dec_seq, src_enc_copy,
                    inst_idx_to_position_map, n_bm, None)
T
Topdu 已提交
354 355 356
                if not active_inst_idx_list:
                    break  # all instances have finished their path to <EOS>
                src_enc, inst_idx_to_position_map = collate_active_info(
357 358 359 360
                    src_enc_copy, inst_idx_to_position_map,
                    active_inst_idx_list)
        batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,
                                                                1)
T
Topdu 已提交
361 362
        result_hyp = []
        for bs_hyp in batch_hyp:
363
            bs_hyp_pad = bs_hyp[0] + [3] * (25 - len(bs_hyp[0]))
T
Topdu 已提交
364
            result_hyp.append(bs_hyp_pad)
365
        return paddle.to_tensor(np.array(result_hyp), dtype=paddle.int64)
T
Topdu 已提交
366 367

    def generate_square_subsequent_mask(self, sz):
368
        """Generate a square mask for the sequence. The masked positions are filled with float('-inf').
T
Topdu 已提交
369 370
            Unmasked positions are filled with float(0.0).
        """
371 372 373 374 375 376
        mask = paddle.zeros([sz, sz], dtype='float32')
        mask_inf = paddle.triu(
            paddle.full(
                shape=[sz, sz], dtype='float32', fill_value='-inf'),
            diagonal=1)
        mask = mask + mask_inf
T
Topdu 已提交
377 378 379
        return mask

    def generate_padding_mask(self, x):
380
        padding_mask = x.equal(paddle.to_tensor(0, dtype=x.dtype))
T
Topdu 已提交
381 382 383
        return padding_mask

    def _reset_parameters(self):
384
        """Initiate parameters in the transformer model."""
T
Topdu 已提交
385 386 387 388 389 390 391

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)


class TransformerEncoder(nn.Layer):
392
    """TransformerEncoder is a stack of N encoder layers
T
Topdu 已提交
393 394 395 396 397 398 399 400 401 402 403 404
    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).
    """

    def __init__(self, encoder_layer, num_layers):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers

    def forward(self, src):
405
        """Pass the input through the endocder layers in turn.
T
Topdu 已提交
406 407 408 409 410 411 412 413
        Args:
            src: the sequnce to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
        """
        output = src

        for i in range(self.num_layers):
414 415
            output = self.layers[i](output,
                                    src_mask=None,
T
Topdu 已提交
416 417 418 419 420 421
                                    src_key_padding_mask=None)

        return output


class TransformerDecoder(nn.Layer):
422
    """TransformerDecoder is a stack of N decoder layers
T
Topdu 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435

    Args:
        decoder_layer: an instance of the TransformerDecoderLayer() class (required).
        num_layers: the number of sub-decoder-layers in the decoder (required).
        norm: the layer normalization component (optional).

    """

    def __init__(self, decoder_layer, num_layers):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers

436 437 438 439 440 441
    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                tgt_key_padding_mask=None,
T
Topdu 已提交
442
                memory_key_padding_mask=None):
443
        """Pass the inputs (and mask) through the decoder layer in turn.
T
Topdu 已提交
444 445 446 447 448 449 450 451 452 453 454

        Args:
            tgt: the sequence to the decoder (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).
        """
        output = tgt
        for i in range(self.num_layers):
455 456 457 458 459 460 461
            output = self.layers[i](
                output,
                memory,
                tgt_mask=tgt_mask,
                memory_mask=memory_mask,
                tgt_key_padding_mask=tgt_key_padding_mask,
                memory_key_padding_mask=memory_key_padding_mask)
T
Topdu 已提交
462 463 464

        return output

465

T
Topdu 已提交
466
class TransformerEncoderLayer(nn.Layer):
467
    """TransformerEncoderLayer is made up of self-attn and feedforward network.
T
Topdu 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    """

482 483 484 485 486 487
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 attention_dropout_rate=0.0,
                 residual_dropout_rate=0.1):
T
Topdu 已提交
488
        super(TransformerEncoderLayer, self).__init__()
489 490 491 492 493 494 495 496 497 498 499
        self.self_attn = MultiheadAttentionOptim(
            d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(
            in_channels=d_model,
            out_channels=dim_feedforward,
            kernel_size=(1, 1))
        self.conv2 = Conv2D(
            in_channels=dim_feedforward,
            out_channels=d_model,
            kernel_size=(1, 1))
T
Topdu 已提交
500 501 502 503 504 505 506

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
507
        """Pass the input through the endocder layer.
T
Topdu 已提交
508 509 510 511 512
        Args:
            src: the sequnce to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
        """
513 514 515 516 517 518
        src2 = self.self_attn(
            src,
            src,
            src,
            attn_mask=src_mask,
            key_padding_mask=src_key_padding_mask)[0]
T
Topdu 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        src = src.transpose([1, 2, 0])
        src = paddle.unsqueeze(src, 2)
        src2 = self.conv2(F.relu(self.conv1(src)))
        src2 = paddle.squeeze(src2, 2)
        src2 = src2.transpose([2, 0, 1])
        src = paddle.squeeze(src, 2)
        src = src.transpose([2, 0, 1])

        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

534

T
Topdu 已提交
535
class TransformerDecoderLayer(nn.Layer):
536
    """TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
T
Topdu 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550
    This standard decoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    """

551 552 553 554 555 556
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 attention_dropout_rate=0.0,
                 residual_dropout_rate=0.1):
T
Topdu 已提交
557
        super(TransformerDecoderLayer, self).__init__()
558 559 560 561 562 563 564 565 566 567 568 569 570
        self.self_attn = MultiheadAttentionOptim(
            d_model, nhead, dropout=attention_dropout_rate)
        self.multihead_attn = MultiheadAttentionOptim(
            d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(
            in_channels=d_model,
            out_channels=dim_feedforward,
            kernel_size=(1, 1))
        self.conv2 = Conv2D(
            in_channels=dim_feedforward,
            out_channels=d_model,
            kernel_size=(1, 1))
T
Topdu 已提交
571 572 573 574 575 576 577 578

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)
        self.dropout3 = Dropout(residual_dropout_rate)

579 580 581 582 583 584 585 586
    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                tgt_key_padding_mask=None,
                memory_key_padding_mask=None):
        """Pass the inputs (and mask) through the decoder layer.
T
Topdu 已提交
587 588 589 590 591 592 593 594 595 596

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        """
597 598 599 600 601 602
        tgt2 = self.self_attn(
            tgt,
            tgt,
            tgt,
            attn_mask=tgt_mask,
            key_padding_mask=tgt_key_padding_mask)[0]
T
Topdu 已提交
603 604
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
605 606 607 608 609 610
        tgt2 = self.multihead_attn(
            tgt,
            memory,
            memory,
            attn_mask=memory_mask,
            key_padding_mask=memory_key_padding_mask)[0]
T
Topdu 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # default
        tgt = tgt.transpose([1, 2, 0])
        tgt = paddle.unsqueeze(tgt, 2)
        tgt2 = self.conv2(F.relu(self.conv1(tgt)))
        tgt2 = paddle.squeeze(tgt2, 2)
        tgt2 = tgt2.transpose([2, 0, 1])
        tgt = paddle.squeeze(tgt, 2)
        tgt = tgt.transpose([2, 0, 1])

        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt


def _get_clones(module, N):
    return LayerList([copy.deepcopy(module) for i in range(N)])


class PositionalEncoding(nn.Layer):
633
    """Inject some information about the relative or absolute position of the tokens
T
Topdu 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
655 656 657
        div_term = paddle.exp(
            paddle.arange(0, dim, 2).astype('float32') *
            (-math.log(10000.0) / dim))
T
Topdu 已提交
658 659 660 661 662 663 664
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0)
        pe = pe.transpose([1, 0, 2])
        self.register_buffer('pe', pe)

    def forward(self, x):
665
        """Inputs of forward function
T
Topdu 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)


class PositionalEncoding_2d(nn.Layer):
679
    """Inject some information about the relative or absolute position of the tokens
T
Topdu 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding_2d, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
701 702 703
        div_term = paddle.exp(
            paddle.arange(0, dim, 2).astype('float32') *
            (-math.log(10000.0) / dim))
T
Topdu 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose([1, 0, 2])
        self.register_buffer('pe', pe)

        self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear1 = nn.Linear(dim, dim)
        self.linear1.weight.data.fill_(1.)
        self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear2 = nn.Linear(dim, dim)
        self.linear2.weight.data.fill_(1.)

    def forward(self, x):
717
        """Inputs of forward function
T
Topdu 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        w_pe = self.pe[:x.shape[-1], :]
        w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
        w_pe = w_pe * w1
        w_pe = w_pe.transpose([1, 2, 0])
        w_pe = w_pe.unsqueeze(2)

        h_pe = self.pe[:x.shape[-2], :]
        w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
        h_pe = h_pe * w2
        h_pe = h_pe.transpose([1, 2, 0])
        h_pe = h_pe.unsqueeze(3)

        x = x + w_pe + h_pe
739 740 741
        x = x.reshape(
            [x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).transpose(
                [2, 0, 1])
T
Topdu 已提交
742 743 744 745 746 747 748 749

        return self.dropout(x)


class Embeddings(nn.Layer):
    def __init__(self, d_model, vocab, padding_idx, scale_embedding):
        super(Embeddings, self).__init__()
        self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
750 751 752
        w0 = np.random.normal(0.0, d_model**-0.5,
                              (vocab, d_model)).astype(np.float32)
        self.embedding.weight.set_value(w0)
T
Topdu 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
        self.d_model = d_model
        self.scale_embedding = scale_embedding

    def forward(self, x):
        if self.scale_embedding:
            x = self.embedding(x)
            return x * math.sqrt(self.d_model)
        return self.embedding(x)


class Beam():
    ''' Beam search '''

    def __init__(self, size, device=False):

        self.size = size
        self._done = False
        # The score for each translation on the beam.
771
        self.scores = paddle.zeros((size, ), dtype=paddle.float32)
T
Topdu 已提交
772 773 774 775
        self.all_scores = []
        # The backpointers at each time-step.
        self.prev_ks = []
        # The outputs at each time-step.
776
        self.next_ys = [paddle.full((size, ), 0, dtype=paddle.int64)]
T
Topdu 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        self.next_ys[0][0] = 2

    def get_current_state(self):
        "Get the outputs for the current timestep."
        return self.get_tentative_hypothesis()

    def get_current_origin(self):
        "Get the backpointers for the current timestep."
        return self.prev_ks[-1]

    @property
    def done(self):
        return self._done

    def advance(self, word_prob):
        "Update beam status and check if finished or not."
        num_words = word_prob.shape[1]

        # Sum the previous scores.
        if len(self.prev_ks) > 0:
            beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
        else:
            beam_lk = word_prob[0]

        flat_beam_lk = beam_lk.reshape([-1])
802 803
        best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True,
                                                        True)  # 1st sort
T
Topdu 已提交
804 805 806 807 808 809
        self.all_scores.append(self.scores)
        self.scores = best_scores
        # bestScoresId is flattened as a (beam x word) array,
        # so we need to calculate which word and beam each score came from
        prev_k = best_scores_id // num_words
        self.prev_ks.append(prev_k)
810
        self.next_ys.append(best_scores_id - prev_k * num_words)
T
Topdu 已提交
811
        # End condition is when top-of-beam is EOS.
812
        if self.next_ys[-1][0] == 3:
T
Topdu 已提交
813 814 815 816 817 818 819
            self._done = True
            self.all_scores.append(self.scores)

        return self._done

    def sort_scores(self):
        "Sort the scores."
820 821
        return self.scores, paddle.to_tensor(
            [i for i in range(self.scores.shape[0])], dtype='int32')
T
Topdu 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    def get_the_best_score_and_idx(self):
        "Get the score of the best in the beam."
        scores, ids = self.sort_scores()
        return scores[1], ids[1]

    def get_tentative_hypothesis(self):
        "Get the decoded sequence for the current timestep."
        if len(self.next_ys) == 1:
            dec_seq = self.next_ys[0].unsqueeze(1)
        else:
            _, keys = self.sort_scores()
            hyps = [self.get_hypothesis(k) for k in keys]
            hyps = [[2] + h for h in hyps]
            dec_seq = paddle.to_tensor(hyps, dtype='int64')
        return dec_seq

    def get_hypothesis(self, k):
        """ Walk back to construct the full hypothesis. """
        hyp = []
        for j in range(len(self.prev_ks) - 1, -1, -1):
843
            hyp.append(self.next_ys[j + 1][k])
T
Topdu 已提交
844 845
            k = self.prev_ks[j][k]
        return list(map(lambda x: x.item(), hyp[::-1]))