program.py 26.3 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


X
xiaoting 已提交
117
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136 137 138 139 140
            sys.exit(1)
    except Exception as e:
        pass


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
159

文幕地方's avatar
文幕地方 已提交
160 161 162 163 164
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
165 166
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
167 168 169 170 171 172
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
文幕地方's avatar
文幕地方 已提交
173 174 175 176
            elif isinstance(preds[k], paddle.Tensor):
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, paddle.Tensor):
            preds = preds.astype(paddle.float32)
文幕地方's avatar
文幕地方 已提交
177
    return preds
178

文幕地方's avatar
文幕地方 已提交
179

W
WenmuZhou 已提交
180
def train(config,
D
dyning 已提交
181 182 183
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
184 185 186 187 188 189 190 191
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
192
          log_writer=None,
文幕地方's avatar
文幕地方 已提交
193
          scaler=None,
文幕地方's avatar
文幕地方 已提交
194 195
          amp_level='O2',
          amp_custom_black_list=[]):
W
WenmuZhou 已提交
196 197
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
198
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
199 200 201 202
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
203
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
204

D
dyning 已提交
205
    global_step = 0
206 207
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
208 209 210 211
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
212 213
        if len(valid_dataloader) == 0:
            logger.info(
214 215
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
216 217
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
218
        logger.info(
219 220
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
221
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
222 223
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
224 225
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
226 227 228 229
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
230
    model_average = False
W
WenmuZhou 已提交
231 232
    model.train()

T
tink2123 已提交
233
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
234
    extra_input_models = [
235
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN", "RobustScanner"
A
andyjpaddle 已提交
236
    ]
A
andyjpaddle 已提交
237
    extra_input = False
A
andyjpaddle 已提交
238
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
239 240 241
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
242 243
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
244
    try:
L
fix bug  
LDOUBLEV 已提交
245
        model_type = config['Architecture']['model_type']
246
    except:
L
fix bug  
LDOUBLEV 已提交
247
        model_type = None
A
andyjpaddle 已提交
248

T
tink2123 已提交
249
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
250

251 252 253 254
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
255 256
    train_reader_cost = 0.0
    train_batch_cost = 0.0
257
    reader_start = time.time()
258
    eta_meter = AverageMeter()
259 260 261

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
262

T
tink2123 已提交
263
    for epoch in range(start_epoch, epoch_num + 1):
264 265 266 267 268
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
269

W
WenmuZhou 已提交
270
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
271
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
272
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
273
            if idx >= max_iter:
W
WenmuZhou 已提交
274 275 276
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
277
            if use_srn:
T
tink2123 已提交
278
                model_average = True
S
stephon 已提交
279 280
            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
281
                with paddle.amp.auto_cast(level=amp_level, custom_black_list=amp_custom_black_list):
S
stephon 已提交
282 283
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
284 285
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
286 287
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
288 289 290 291 292 293
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
294
            else:
S
stephon 已提交
295 296
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
X
xiaoting 已提交
297
                elif model_type in ["kie", 'vqa', 'sr']:
L
LDOUBLEV 已提交
298
                    preds = model(batch)
S
stephon 已提交
299 300
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
301 302
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
303 304
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
305

W
WenmuZhou 已提交
306
            optimizer.clear_grad()
W
WenmuZhou 已提交
307

308 309
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
310
                if model_type in ['kie', 'sr']:
311
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
312 313 314
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
315
                else:
A
andyjpaddle 已提交
316 317 318 319
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
320 321 322
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
323 324
                    else:
                        post_result = post_process_class(preds, batch[1])
325 326 327 328
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

329 330 331
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
332
            global_step += 1
文幕地方's avatar
文幕地方 已提交
333
            total_samples += len(images)
W
WenmuZhou 已提交
334

D
dyning 已提交
335 336
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
337 338 339 340 341 342

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

343
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
344 345
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
346

347 348 349
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
350
                logs = train_stats.log()
L
LDOUBLEV 已提交
351

352 353 354 355
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
356 357
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
358 359 360 361 362
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
363
                logger.info(strs)
364

文幕地方's avatar
文幕地方 已提交
365
                total_samples = 0
366 367
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
368 369
            # eval
            if global_step > start_eval_step and \
370 371
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
372 373 374 375 376 377 378
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
379 380 381 382 383
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
384
                    model_type,
文幕地方's avatar
文幕地方 已提交
385
                    extra_input=extra_input,
文幕地方's avatar
文幕地方 已提交
386 387 388
                    scaler=scaler,
                    amp_level=amp_level,
                    amp_custom_black_list=amp_custom_black_list)
L
LDOUBLEV 已提交
389 390 391
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
392 393

                # logger metric
394
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
395 396
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
397

L
LDOUBLEV 已提交
398
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
399
                        main_indicator]:
L
LDOUBLEV 已提交
400
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
401 402 403 404 405 406
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
407
                        config,
W
WenmuZhou 已提交
408 409 410
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
411 412
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
413
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
414 415 416 417
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
418
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
419 420 421 422 423 424 425 426 427 428 429 430
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
431

文幕地方's avatar
文幕地方 已提交
432
            reader_start = time.time()
W
WenmuZhou 已提交
433 434 435 436 437 438
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
439
                config,
W
WenmuZhou 已提交
440 441 442
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
443 444
                epoch=epoch,
                global_step=global_step)
445

446 447
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
448

W
WenmuZhou 已提交
449 450 451 452 453 454
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
455
                config,
W
WenmuZhou 已提交
456 457 458
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
459 460
                epoch=epoch,
                global_step=global_step)
461
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
462 463
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
464

L
LDOUBLEV 已提交
465
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
466 467
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
468 469
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
470 471 472
    return


M
refine  
MissPenguin 已提交
473 474 475 476
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
477
         model_type=None,
文幕地方's avatar
文幕地方 已提交
478
         extra_input=False,
文幕地方's avatar
文幕地方 已提交
479 480 481
         scaler=None,
         amp_level='O2',
         amp_custom_black_list = []):
W
WenmuZhou 已提交
482 483 484 485
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
486 487 488 489 490
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
491 492
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
493
        sum_images = 0
W
WenmuZhou 已提交
494
        for idx, batch in enumerate(valid_dataloader):
495
            if idx >= max_iter:
W
WenmuZhou 已提交
496
                break
W
fix bug  
WenmuZhou 已提交
497
            images = batch[0]
W
WenmuZhou 已提交
498
            start = time.time()
文幕地方's avatar
文幕地方 已提交
499 500 501

            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
502
                with paddle.amp.auto_cast(level=amp_level, custom_black_list=amp_custom_black_list):
文幕地方's avatar
文幕地方 已提交
503 504 505 506
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
X
xiaoting 已提交
507 508 509 510 511 512 513 514 515 516
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]

                        for i in (range(sr_img.shape[0])):
                            fm_sr = (sr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
                            fm_lr = (lr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
517 518 519 520
                            cv2.imwrite("output/images/{}_{}_sr.jpg".format(
                                sum_images, i), fm_sr)
                            cv2.imwrite("output/images/{}_{}_lr.jpg".format(
                                sum_images, i), fm_lr)
文幕地方's avatar
文幕地方 已提交
521 522
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
523
                preds = to_float32(preds)
X
xiaoting 已提交
524
            else:
文幕地方's avatar
文幕地方 已提交
525 526 527 528
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie", 'vqa']:
                    preds = model(batch)
X
xiaoting 已提交
529 530 531 532 533 534 535 536 537 538
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]

                    for i in (range(sr_img.shape[0])):
                        fm_sr = (sr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
                        fm_lr = (lr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
539 540 541 542
                        cv2.imwrite("output/images/{}_{}_sr.jpg".format(
                            sum_images, i), fm_sr)
                        cv2.imwrite("output/images/{}_{}_lr.jpg".format(
                            sum_images, i), fm_lr)
文幕地方's avatar
文幕地方 已提交
543 544 545
                else:
                    preds = model(images)

546 547 548 549 550 551
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
552 553 554
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
555
            if model_type in ['kie']:
556
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
557
            elif model_type in ['table', 'vqa']:
558 559
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
X
xiaoting 已提交
560 561
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
M
MissPenguin 已提交
562
            else:
563 564
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
565

W
fix bug  
WenmuZhou 已提交
566
            pbar.update(1)
W
WenmuZhou 已提交
567
            total_frame += len(images)
X
xiaoting 已提交
568
            sum_images += 1
L
LDOUBLEV 已提交
569 570
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
571

W
fix bug  
WenmuZhou 已提交
572
    pbar.close()
W
WenmuZhou 已提交
573
    model.train()
L
LDOUBLEV 已提交
574 575
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
576

T
tink2123 已提交
577

B
Bin Lu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


627
def preprocess(is_train=False):
L
licx 已提交
628
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
629
    profiler_options = FLAGS.profiler_options
L
licx 已提交
630
    config = load_config(FLAGS.config)
631
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
632
    profile_dic = {"profiler_options": FLAGS.profiler_options}
633
    config = merge_config(config, profile_dic)
L
licx 已提交
634

W
WenmuZhou 已提交
635 636 637 638 639 640 641 642 643 644
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
645
    logger = get_logger(log_file=log_file)
L
licx 已提交
646 647 648

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
649
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
650

651 652 653 654 655 656
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
657 658
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
659
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
660
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
661
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
662
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN',
663
        'Gestalt', 'SLANet', 'RobustScanner'
W
WenmuZhou 已提交
664
    ]
L
licx 已提交
665

666
    if use_xpu:
X
xiaoting 已提交
667 668 669 670 671 672
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
673
    device = paddle.set_device(device)
D
dyning 已提交
674

D
dyning 已提交
675
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
676

677 678
    loggers = []

679
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
680
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
681
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
682
        log_writer = VDLLogger(vdl_writer_path)
683
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
684 685
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
686 687 688 689 690 691 692 693
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
694
        loggers.append(log_writer)
D
dyning 已提交
695
    else:
696
        log_writer = None
D
dyning 已提交
697
    print_dict(config, logger)
698 699 700 701 702 703

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
704 705
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
706
    return config, device, logger, log_writer