rec_vitstr_none_ce.yml 2.3 KB
Newer Older
T
Topdu 已提交
1 2 3 4 5
Global:
  use_gpu: True
  epoch_num: 20
  log_smooth_window: 20
  print_batch_step: 10
T
Topdu 已提交
6
  save_model_dir: ./output/rec/vitstr_none_ce/
T
Topdu 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  save_epoch_step: 1
  # evaluation is run every 2000 iterations after the 0th iteration#
  eval_batch_step: [0, 50]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_10.png
  # for data or label process
  character_dict_path: ppocr/utils/EN_symbol_dict.txt
  max_text_length: 25
  infer_mode: False
  use_space_char: False
  save_res_path: ./output/rec/predicts_vitstr.txt


Optimizer:
  name: Adadelta
  epsilon: 0.00000001
  rho: 0.95
  clip_norm: 5.0
  lr:
    learning_rate: 1.0

Architecture:
  model_type: rec
  algorithm: ViTSTR
  in_channels: 1
  Transform:
  Backbone:
    name: ViTSTR
    scale: tiny
  Neck:
    name: SequenceEncoder
    encoder_type: reshape
  Head:
    name: CTCHead

Loss:
T
Topdu 已提交
47
  name: CELoss
T
Topdu 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  smoothing: False
  with_all: True

PostProcess:
  name: ViTSTRLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
    name: LMDBDataSet
    data_dir: ./train_data/data_lmdb_release/training
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ViTSTRLabelEncode: # Class handling label
      - GrayRecResizeImg:
          image_shape: [224, 224] # W H
          resize_type: PIL # PIL or OpenCV
          inter_type: 'Image.BICUBIC'
          scale: false
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 48
    drop_last: True
    num_workers: 2

Eval:
  dataset:
    name: LMDBDataSet
    data_dir: ./train_data/data_lmdb_release/validation
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ViTSTRLabelEncode: # Class handling label
      - GrayRecResizeImg:
          image_shape: [224, 224] # W H
          resize_type: PIL # PIL or OpenCV
          inter_type: 'Image.BICUBIC'
          scale: false
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 2