rec_r34_vd_none_none_ctc.yml 2.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
Global:
  use_gpu: false
  epoch_num: 500
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec/res34_none_none_ctc/
  save_epoch_step: 500
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 127
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  max_text_length: 80
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  character_type: 'ch'
  use_space_char: False
  infer_mode: False
  use_tps: False


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  learning_rate:
    name: Cosine
    lr: 0.001
    warmup_epoch: 4
  regularizer:
    name: 'L2'
    factor: 0.00001

Architecture:
  type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: ResNet
    layers: 34
  Neck:
    name: SequenceEncoder
    encoder_type: reshape
  Head:
    name: CTC
    fc_decay: 0.00001

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

TRAIN:
  dataset:
    name: SimpleDataSet
    data_dir: ./rec
    file_list:
      - ./rec/train.txt # dataset1
    ratio_list: [ 0.4,0.6 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecAug:
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    batch_size: 256
    shuffle: True
    drop_last: True
    num_workers: 8

EVAL:
  dataset:
    name: SimpleDataSet
    data_dir: ./rec
    file_list:
      - ./rec/val.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    shuffle: False
    drop_last: False
    batch_size: 256
    num_workers: 8