README_en.md 12.9 KB
Newer Older
1 2
English | [简体中文](README.md)

X
xxxpsyduck 已提交
3
## INTRODUCTION
4 5
PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice.

D
dyning 已提交
6 7 8 9 10 11 12 13 14
**Live stream on coming day**:  July 21, 2020 at 8 pm BiliBili station live stream

**Recent updates**

- 2020.7.15, Add mobile App demo , support both iOS and  Android  ( based on easyedge and Paddle Lite)
- 2020.7.15, Improve the  deployment ability, add the C + +  inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight Chinese OCR model are provided.
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
- 2020.7.9 Add a new model to support recognize the  character "space".
- 2020.7.9 Add the data augument and learning rate decay strategies during training.
15
- [more](./doc/doc_en/update_en.md)
X
xxxpsyduck 已提交
16

X
xxxpsyduck 已提交
17
## FEATURES
D
dyning 已提交
18
- Ultra-lightweight Chinese OCR model, total model size is only 8.6M
19 20 21 22
    - Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition
    - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
D
dyning 已提交
23
- Support Linux, Windows, MacOS and other systems.
X
xxxpsyduck 已提交
24

D
dyning 已提交
25
## Visualization
X
xxxpsyduck 已提交
26

27
![](doc/imgs_results/11.jpg)
X
xxxpsyduck 已提交
28

D
dyning 已提交
29
[More visualization](./doc/doc_en/visualization_en.md)
X
xxxpsyduck 已提交
30

D
dyning 已提交
31
You can also quickly experience the ultra-lightweight Chinese OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
T
tink2123 已提交
32

D
dyning 已提交
33
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
T
tink2123 已提交
34

D
dyning 已提交
35
 Also, you can scan the QR code blow to install the App (**Android support only**)
T
tink2123 已提交
36

D
dyning 已提交
37 38 39
<div align="center">
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
</div>
40

D
dyning 已提交
41
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)
T
tink2123 已提交
42

D
dyning 已提交
43
<a name="Supported-Chinese-model-list"></a>
44

D
dyning 已提交
45
### Supported Chinese Models:
46

D
dyning 已提交
47 48 49 50
|Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
|-|-|-|-|-|
|chinese_db_crnn_mobile|ultra-lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
X
xxxpsyduck 已提交
51 52


D
dyning 已提交
53 54 55 56 57 58 59 60 61 62
## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- Algorithm introduction
    - [Text Detection Algorithm](#TEXTDETECTIONALGORITHM)
    - [Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
    - [END-TO-END OCR Algorithm](#ENDENDOCRALGORITHM)
- Model training/evaluation
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
D
dyning 已提交
63
    - [Yml Configuration](./doc/doc_en/config_en.md)
D
dyning 已提交
64 65 66 67 68
    - [Tricks](./doc/doc_en/tricks_en.md)
- 预测部署
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./doc/doc_en/serving_en.md)
D
dyning 已提交
69
    - [Mobile](./deploy/lite/readme_en.md)
D
dyning 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    - Model Quantization and Compression (coming soon)
    - [Benchmark](./doc/doc_en/benchmark_en.md)
- 数据集
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- [FAQ](#FAQ)
- Visualization
    - [Ultra-lightweight Chinese/English OCR Visualization](#UCOCRVIS)
    - [General Chinese/English OCR Visualization](#GeOCRVIS)
    - [Chinese/English OCR Visualization (Support Space Recognization )](#SpaceOCRVIS)
- [COMMUNITY](#Community)
- [REFERENCES](./doc/doc_en/reference_en.md)
- [LICENSE](#LICENSE)
- [CONTRIBUTION](#CONTRIBUTION)

<a name="TEXTDETECTIONALGORITHM"></a>
## Text Detection Algorithm
X
xxxpsyduck 已提交
90

91
PaddleOCR open source text detection algorithms list:
X
xxxpsyduck 已提交
92 93
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
94
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
95

96
On the ICDAR2015 dataset, the text detection result is as follows:
X
xxxpsyduck 已提交
97

98
|Model|Backbone|precision|recall|Hmean|Download link|
X
xxxpsyduck 已提交
99
|-|-|-|-|-|-|
100 101 102 103
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
X
xxxpsyduck 已提交
104

M
MissPenguin 已提交
105
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows:
106
|Model|Backbone|Configuration file|Pre-trained model|
X
xxxpsyduck 已提交
107
|-|-|-|-|
D
dyning 已提交
108
|ultra-lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
109
|General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
X
xxxpsyduck 已提交
110

111
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
X
xxxpsyduck 已提交
112

M
MissPenguin 已提交
113
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
X
xxxpsyduck 已提交
114

D
dyning 已提交
115 116
<a name="TEXTRECOGNITIONALGORITHM"></a>
## Text Recognition Algorithm
X
xxxpsyduck 已提交
117

118
PaddleOCR open-source text recognition algorithms list:
X
xxxpsyduck 已提交
119 120 121 122
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
123
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
124

125
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
X
xxxpsyduck 已提交
126

127
|Model|Backbone|Avg Accuracy|Module combination|Download link|
X
xxxpsyduck 已提交
128
|-|-|-|-|-|
129 130 131 132 133 134 135 136 137
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|

M
MissPenguin 已提交
138
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w  traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
139
|Model|Backbone|Configuration file|Pre-trained model|
X
xxxpsyduck 已提交
140
|-|-|-|-|
D
dyning 已提交
141
|ultra-lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
T
tink2123 已提交
142
|General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
X
xxxpsyduck 已提交
143

M
MissPenguin 已提交
144
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
X
xxxpsyduck 已提交
145

D
dyning 已提交
146 147
<a name="ENDENDOCRALGORITHM"></a>
## END-TO-END OCR Algorithm
148
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
149

D
dyning 已提交
150
## Visualization
X
xxxpsyduck 已提交
151

D
dyning 已提交
152 153
<a name="UCOCRVIS"></a>
### 1.Ultra-lightweight Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
X
xxxpsyduck 已提交
154

D
dyning 已提交
155 156 157
<div align="center">
    <img src="doc/imgs_results/1.jpg" width="800">
</div>
T
tink2123 已提交
158

D
dyning 已提交
159 160
<a name="GeOCRVIS"></a>
### 2. General Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
T
tink2123 已提交
161

D
dyning 已提交
162 163 164
<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div>
T
tink2123 已提交
165

D
dyning 已提交
166 167
<a name="SpaceOCRVIS"></a>
### 3.Chinese/English OCR Visualization (Space_support) [more](./doc/doc_en/visualization_en.md)
T
tink2123 已提交
168

D
dyning 已提交
169 170 171
<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div>
T
tink2123 已提交
172

T
tink2123 已提交
173
<a name="FAQ"></a>
D
dyning 已提交
174

X
xxxpsyduck 已提交
175
## FAQ
T
tink2123 已提交
176
1. Error when using attention-based recognition model: KeyError: 'predict'
X
xxxpsyduck 已提交
177

178
    The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
L
LDOUBLEV 已提交
179

T
tink2123 已提交
180
2. About inference speed
X
xxxpsyduck 已提交
181

182
    When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
X
xxxpsyduck 已提交
183

T
tink2123 已提交
184
3. Service deployment and mobile deployment
X
xxxpsyduck 已提交
185

186
    It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
L
LDOUBLEV 已提交
187

T
tink2123 已提交
188
4. Release time of self-developed algorithm
189 190

    Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
L
LDOUBLEV 已提交
191

192
[more](./doc/doc_en/FAQ_en.md)
X
xxxpsyduck 已提交
193

D
dyning 已提交
194 195 196 197 198 199 200
<a name="Community"></a>
## COMMUNITY
Scan  the QR code below with your wechat and completing the questionnaire, you can access to offical technical exchange group.

<div align="center">
<img src="./doc/joinus.jpg"  width = "200" height = "200" />
</div>
X
xxxpsyduck 已提交
201

D
dyning 已提交
202
<a name="LICENSE"></a>
X
xxxpsyduck 已提交
203
## LICENSE
204
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
X
xxxpsyduck 已提交
205

D
dyning 已提交
206
<a name="CONTRIBUTION"></a>
X
xxxpsyduck 已提交
207
## CONTRIBUTION
208
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
T
tink2123 已提交
209 210

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
L
LDOUBLEV 已提交
211
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
212
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
D
dyning 已提交
213
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
D
dyning 已提交
214
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.