rec_nrtr_optim_head.py 33.2 KB
Newer Older
T
Topdu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
import math
import paddle
import copy
from  paddle import nn
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
from ppocr.modeling.heads.multiheadAttention import MultiheadAttentionOptim
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)

class TransformerOptim(nn.Layer):
    r"""A transformer model. User is able to modify the attributes as needed. The architechture
    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
    Processing Systems, pages 6000-6010.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).

    Examples::
        >>> transformer_model = nn.Transformer(src_vocab, tgt_vocab)
        >>> transformer_model = nn.Transformer(src_vocab, tgt_vocab, nhead=16, num_encoder_layers=12)
    """

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, beam_size=0,
                 num_decoder_layers=6, dim_feedforward=1024, attention_dropout_rate=0.0, residual_dropout_rate=0.1,
                 custom_encoder=None, custom_decoder=None,in_channels=0,out_channels=0,dst_vocab_size=99,scale_embedding=True):
        super(TransformerOptim, self).__init__()
        self.embedding = Embeddings(
            d_model=d_model,
            vocab=dst_vocab_size,
            padding_idx=0,
            scale_embedding=scale_embedding
        )
        self.positional_encoding = PositionalEncoding(
            dropout=residual_dropout_rate,
            dim=d_model,
        )
        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            if num_encoder_layers > 0 :
                encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate)
            
                self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers)
            else:
                self.encoder = None

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)

        self._reset_parameters()
        self.beam_size = beam_size
        self.d_model = d_model
        self.nhead = nhead
        self.tgt_word_prj = nn.Linear(d_model, dst_vocab_size, bias_attr=False)
        w0 = np.random.normal(0.0, d_model**-0.5,(d_model, dst_vocab_size)).astype(np.float32)
        self.tgt_word_prj.weight.set_value(w0)
        self.apply(self._init_weights)
       

    def _init_weights(self, m):
        
        if isinstance(m, nn.Conv2D):
            xavier_normal_(m.weight)
            if m.bias is not None:
                zeros_(m.bias)

    def forward_train(self,src,tgt):
            tgt = tgt[:, :-1]

            
 
            tgt_key_padding_mask = self.generate_padding_mask(tgt)
            tgt = self.embedding(tgt).transpose([1, 0, 2])
            tgt = self.positional_encoding(tgt)
            tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])

            if self.encoder is not None :
                src = self.positional_encoding(src.transpose([1, 0, 2]))
                memory = self.encoder(src)
            else:
                memory = src.squeeze(2).transpose([2, 0, 1])
            output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=None,
                                tgt_key_padding_mask=tgt_key_padding_mask,
                                memory_key_padding_mask=None)
            output = output.transpose([1, 0, 2])
            logit = self.tgt_word_prj(output)
            return logit

    def forward(self, src, tgt=None):
        r"""Take in and process masked source/target sequences.

        Args:
            src: the sequence to the encoder (required).
            tgt: the sequence to the decoder (required).
            src_mask: the additive mask for the src sequence (optional).
            tgt_mask: the additive mask for the tgt sequence (optional).
            memory_mask: the additive mask for the encoder output (optional).
            src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
            tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
            memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).

        Shape:
            - src: :math:`(S, N, E)`.
            - tgt: :math:`(T, N, E)`.
            - src_mask: :math:`(S, S)`.
            - tgt_mask: :math:`(T, T)`.
            - memory_mask: :math:`(T, S)`.
            - src_key_padding_mask: :math:`(N, S)`.
            - tgt_key_padding_mask: :math:`(N, T)`.
            - memory_key_padding_mask: :math:`(N, S)`.

            Note: [src/tgt/memory]_mask should be filled with
            float('-inf') for the masked positions and float(0.0) else. These masks
            ensure that predictions for position i depend only on the unmasked positions
            j and are applied identically for each sequence in a batch.
            [src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions
            that should be masked with float('-inf') and False values will be unchanged.
            This mask ensures that no information will be taken from position i if
            it is masked, and has a separate mask for each sequence in a batch.

            - output: :math:`(T, N, E)`.

            Note: Due to the multi-head attention architecture in the transformer model,
            the output sequence length of a transformer is same as the input sequence
            (i.e. target) length of the decode.

            where S is the source sequence length, T is the target sequence length, N is the
            batch size, E is the feature number

        Examples:
            >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
        """
        if tgt is not None:
            return self.forward_train(src, tgt)
        else:
            if self.beam_size > 0 :
                return self.forward_beam(src)
            else:
                return self.forward_test(src)

    def forward_test(self, src):
        bs = src.shape[0]
        if self.encoder is not None :
            src = self.positional_encoding(src.transpose([1, 0, 2]))
            memory = self.encoder(src)
        else:
            memory = src.squeeze(2).transpose([2, 0, 1])
        dec_seq = paddle.full((bs,1), 2, dtype=paddle.int64)
        for len_dec_seq in range(1, 25):
            src_enc = memory.clone()
            tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
            dec_seq_embed = self.embedding(dec_seq).transpose([1, 0, 2])
            dec_seq_embed = self.positional_encoding(dec_seq_embed)
            tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[0])
            output = self.decoder(dec_seq_embed, src_enc, tgt_mask=tgt_mask, memory_mask=None,
                                tgt_key_padding_mask=tgt_key_padding_mask,
                                memory_key_padding_mask=None)
            dec_output = output.transpose([1, 0, 2])
            
            dec_output = dec_output[:, -1, :]  # Pick the last step: (bh * bm) * d_h
            word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
            word_prob = word_prob.reshape([1, bs, -1])
            preds_idx = word_prob.argmax(axis=2)
            
            if paddle.equal_all(preds_idx[-1],paddle.full(preds_idx[-1].shape,3,dtype='int64')):
                break

            preds_prob = word_prob.max(axis=2)
            dec_seq = paddle.concat([dec_seq,preds_idx.reshape([-1,1])],axis=1)

        return dec_seq   

    def forward_beam(self,images):
             
        ''' Translation work in one batch '''

        def get_inst_idx_to_tensor_position_map(inst_idx_list):
            ''' Indicate the position of an instance in a tensor. '''
            return {inst_idx: tensor_position for tensor_position, inst_idx in enumerate(inst_idx_list)}

        def collect_active_part(beamed_tensor, curr_active_inst_idx, n_prev_active_inst, n_bm):
            ''' Collect tensor parts associated to active instances. '''

            _, *d_hs = beamed_tensor.shape
            n_curr_active_inst = len(curr_active_inst_idx)
            new_shape = (n_curr_active_inst * n_bm, *d_hs)

            beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])#contiguous()
            beamed_tensor = beamed_tensor.index_select(paddle.to_tensor(curr_active_inst_idx),axis=0)
            beamed_tensor = beamed_tensor.reshape([*new_shape])

            return beamed_tensor


        def collate_active_info(
                src_enc, inst_idx_to_position_map, active_inst_idx_list):
            # Sentences which are still active are collected,
            # so the decoder will not run on completed sentences.
           
            n_prev_active_inst = len(inst_idx_to_position_map)
            active_inst_idx = [inst_idx_to_position_map[k] for k in active_inst_idx_list]
            active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
            active_src_enc = collect_active_part(src_enc.transpose([1, 0, 2]), active_inst_idx, n_prev_active_inst, n_bm).transpose([1, 0, 2])
            active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)
            return active_src_enc, active_inst_idx_to_position_map

        def beam_decode_step(
                inst_dec_beams, len_dec_seq, enc_output, inst_idx_to_position_map, n_bm, memory_key_padding_mask):
            ''' Decode and update beam status, and then return active beam idx '''

            def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
                dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done]
                dec_partial_seq = paddle.stack(dec_partial_seq)
                
                dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
                return dec_partial_seq

            def prepare_beam_memory_key_padding_mask(inst_dec_beams, memory_key_padding_mask, n_bm):
                keep = []
                for idx in (memory_key_padding_mask):
                    if not inst_dec_beams[idx].done:
                        keep.append(idx)
                memory_key_padding_mask = memory_key_padding_mask[paddle.to_tensor(keep)]
                len_s = memory_key_padding_mask.shape[-1]
                n_inst = memory_key_padding_mask.shape[0]
                memory_key_padding_mask = paddle.concat([memory_key_padding_mask for i in range(n_bm)],axis=1)
                memory_key_padding_mask = memory_key_padding_mask.reshape([n_inst * n_bm, len_s])#repeat(1, n_bm)
                return memory_key_padding_mask

            def predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask):
                tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
                dec_seq = self.embedding(dec_seq).transpose([1, 0, 2])
                dec_seq = self.positional_encoding(dec_seq)
                tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[0])
                dec_output = self.decoder(
                    dec_seq, enc_output,
                    tgt_mask=tgt_mask,
                    tgt_key_padding_mask=tgt_key_padding_mask,
                    memory_key_padding_mask=memory_key_padding_mask,
                ).transpose([1, 0, 2])
                dec_output = dec_output[:, -1, :]  # Pick the last step: (bh * bm) * d_h
                word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
                word_prob = word_prob.reshape([n_active_inst, n_bm, -1])
                return word_prob

            def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map):
                active_inst_idx_list = []
                for inst_idx, inst_position in inst_idx_to_position_map.items():
                    is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position])
                    if not is_inst_complete:
                        active_inst_idx_list += [inst_idx]

                return active_inst_idx_list

            n_active_inst = len(inst_idx_to_position_map)
            dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
            memory_key_padding_mask = None
            word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask)
            # Update the beam with predicted word prob information and collect incomplete instances
            active_inst_idx_list = collect_active_inst_idx_list(
                inst_dec_beams, word_prob, inst_idx_to_position_map)
            return active_inst_idx_list

        def collect_hypothesis_and_scores(inst_dec_beams, n_best):
            all_hyp, all_scores = [], []
            for inst_idx in range(len(inst_dec_beams)):
                scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
                all_scores += [scores[:n_best]]
                hyps = [inst_dec_beams[inst_idx].get_hypothesis(i) for i in tail_idxs[:n_best]]
                all_hyp += [hyps]
            return all_hyp, all_scores

        with paddle.no_grad():
            #-- Encode
 
            if self.encoder is not None :
                src = self.positional_encoding(images.transpose([1, 0, 2]))
                src_enc = self.encoder(src).transpose([1, 0, 2])
            else:
                src_enc = images.squeeze(2).transpose([0, 2, 1])

            #-- Repeat data for beam search
            n_bm = self.beam_size
            n_inst, len_s, d_h = src_enc.shape
            src_enc = paddle.concat([src_enc for i in range(n_bm)],axis=1)
            src_enc = src_enc.reshape([n_inst * n_bm, len_s, d_h]).transpose([1, 0, 2])#repeat(1, n_bm, 1)
            #-- Prepare beams
            inst_dec_beams = [Beam(n_bm) for _ in range(n_inst)]

            #-- Bookkeeping for active or not
            active_inst_idx_list = list(range(n_inst))
            inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)
            #-- Decode
            for len_dec_seq in range(1, 25):
                src_enc_copy = src_enc.clone()
                active_inst_idx_list = beam_decode_step(
                    inst_dec_beams, len_dec_seq, src_enc_copy, inst_idx_to_position_map, n_bm, None)
                if not active_inst_idx_list:
                    break  # all instances have finished their path to <EOS>
                src_enc, inst_idx_to_position_map = collate_active_info(
                    src_enc_copy, inst_idx_to_position_map, active_inst_idx_list)
        batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams, 1)
        result_hyp = []
        for bs_hyp in batch_hyp:
            bs_hyp_pad =bs_hyp[0]+[3]*(25-len(bs_hyp[0]))
            result_hyp.append(bs_hyp_pad)
        return paddle.to_tensor(np.array(result_hyp),dtype=paddle.int64)

    def generate_square_subsequent_mask(self, sz):
        r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
            Unmasked positions are filled with float(0.0).
        """
        mask = paddle.zeros([sz, sz],dtype='float32')
        mask_inf = paddle.triu(paddle.full(shape=[sz,sz], dtype='float32', fill_value='-inf'),diagonal=1)
        mask = mask+mask_inf
        return mask

    def generate_padding_mask(self, x):
        padding_mask = x.equal(paddle.to_tensor(0,dtype=x.dtype))
        return padding_mask

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)


class TransformerEncoder(nn.Layer):
    r"""TransformerEncoder is a stack of N encoder layers

    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
        >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
    """

    def __init__(self, encoder_layer, num_layers):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers


    def forward(self, src):
        r"""Pass the input through the endocder layers in turn.

        Args:
            src: the sequnce to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = src

        for i in range(self.num_layers):
            output = self.layers[i](output, src_mask=None,
                                    src_key_padding_mask=None)

        return output


class TransformerDecoder(nn.Layer):
    r"""TransformerDecoder is a stack of N decoder layers

    Args:
        decoder_layer: an instance of the TransformerDecoderLayer() class (required).
        num_layers: the number of sub-decoder-layers in the decoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
        >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
    """

    def __init__(self, decoder_layer, num_layers):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        

    def forward(self, tgt, memory, tgt_mask=None,
                memory_mask=None, tgt_key_padding_mask=None,
                memory_key_padding_mask=None):
        r"""Pass the inputs (and mask) through the decoder layer in turn.

        Args:
            tgt: the sequence to the decoder (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = tgt
        for i in range(self.num_layers):
            output = self.layers[i](output, memory, tgt_mask=tgt_mask,
                                    memory_mask=memory_mask,
                                    tgt_key_padding_mask=tgt_key_padding_mask,
                                    memory_key_padding_mask=memory_key_padding_mask)

        return output

class TransformerEncoderLayer(nn.Layer):
    r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
    """

    def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1))
        self.conv2 = Conv2D(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1))

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        r"""Pass the input through the endocder layer.

        Args:
            src: the sequnce to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        src = src.transpose([1, 2, 0])
        src = paddle.unsqueeze(src, 2)
        src2 = self.conv2(F.relu(self.conv1(src)))
        src2 = paddle.squeeze(src2, 2)
        src2 = src2.transpose([2, 0, 1])
        src = paddle.squeeze(src, 2)
        src = src.transpose([2, 0, 1])

        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

class TransformerDecoderLayer(nn.Layer):
    r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
    This standard decoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
    """

    def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1):
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)
        self.multihead_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1))
        self.conv2 = Conv2D(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1))

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)
        self.dropout3 = Dropout(residual_dropout_rate)

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        r"""Pass the inputs (and mask) through the decoder layer.

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # default
        tgt = tgt.transpose([1, 2, 0])
        tgt = paddle.unsqueeze(tgt, 2)
        tgt2 = self.conv2(F.relu(self.conv1(tgt)))
        tgt2 = paddle.squeeze(tgt2, 2)
        tgt2 = tgt2.transpose([2, 0, 1])
        tgt = paddle.squeeze(tgt, 2)
        tgt = tgt.transpose([2, 0, 1])

        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt


def _get_clones(module, N):
    return LayerList([copy.deepcopy(module) for i in range(N)])



class PositionalEncoding(nn.Layer):
    r"""Inject some information about the relative or absolute position of the tokens
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
        div_term = paddle.exp(paddle.arange(0, dim, 2).astype('float32') * (-math.log(10000.0) / dim))
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0)
        pe = pe.transpose([1, 0, 2])
        self.register_buffer('pe', pe)

    def forward(self, x):
        r"""Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)


class PositionalEncoding_2d(nn.Layer):
    r"""Inject some information about the relative or absolute position of the tokens
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding_2d, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
        div_term = paddle.exp(paddle.arange(0, dim, 2).astype('float32') * (-math.log(10000.0) / dim))
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose([1, 0, 2])
        self.register_buffer('pe', pe)

        self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear1 = nn.Linear(dim, dim)
        self.linear1.weight.data.fill_(1.)
        self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear2 = nn.Linear(dim, dim)
        self.linear2.weight.data.fill_(1.)

    def forward(self, x):
        r"""Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        w_pe = self.pe[:x.shape[-1], :]
        w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
        w_pe = w_pe * w1
        w_pe = w_pe.transpose([1, 2, 0])
        w_pe = w_pe.unsqueeze(2)

        h_pe = self.pe[:x.shape[-2], :]
        w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
        h_pe = h_pe * w2
        h_pe = h_pe.transpose([1, 2, 0])
        h_pe = h_pe.unsqueeze(3)

        x = x + w_pe + h_pe
        x = x.reshape([x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).transpose([2,0,1])

        return self.dropout(x)


class Embeddings(nn.Layer):
    def __init__(self, d_model, vocab, padding_idx, scale_embedding):
        super(Embeddings, self).__init__()
        self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
        w0 = np.random.normal(0.0, d_model**-0.5,(vocab, d_model)).astype(np.float32)
        self.embedding.weight.set_value(w0) 
        self.d_model = d_model
        self.scale_embedding = scale_embedding

    def forward(self, x):
        if self.scale_embedding:
            x = self.embedding(x)
            return x * math.sqrt(self.d_model)
        return self.embedding(x)





class Beam():
    ''' Beam search '''

    def __init__(self, size, device=False):

        self.size = size
        self._done = False
        # The score for each translation on the beam.
        self.scores = paddle.zeros((size,), dtype=paddle.float32)
        self.all_scores = []
        # The backpointers at each time-step.
        self.prev_ks = []
        # The outputs at each time-step.
        self.next_ys =  [paddle.full((size,), 0, dtype=paddle.int64)]
        self.next_ys[0][0] = 2

    def get_current_state(self):
        "Get the outputs for the current timestep."
        return self.get_tentative_hypothesis()

    def get_current_origin(self):
        "Get the backpointers for the current timestep."
        return self.prev_ks[-1]

    @property
    def done(self):
        return self._done

    def advance(self, word_prob):
        "Update beam status and check if finished or not."
        num_words = word_prob.shape[1]

        # Sum the previous scores.
        if len(self.prev_ks) > 0:
            beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
        else:
            beam_lk = word_prob[0]

        flat_beam_lk = beam_lk.reshape([-1])
        best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 1st sort
        self.all_scores.append(self.scores)
        self.scores = best_scores

        # bestScoresId is flattened as a (beam x word) array,
        # so we need to calculate which word and beam each score came from
        prev_k = best_scores_id // num_words
        self.prev_ks.append(prev_k)
        
        self.next_ys.append(best_scores_id - prev_k * num_words) 

        # End condition is when top-of-beam is EOS.
        if self.next_ys[-1][0] == 3 :
            self._done = True
            self.all_scores.append(self.scores)
      

        return self._done

    def sort_scores(self):
        "Sort the scores."
        return self.scores, paddle.to_tensor([i for i in range(self.scores.shape[0])],dtype='int32')

    def get_the_best_score_and_idx(self):
        "Get the score of the best in the beam."
        scores, ids = self.sort_scores()
        return scores[1], ids[1]

    def get_tentative_hypothesis(self):
        "Get the decoded sequence for the current timestep."

        if len(self.next_ys) == 1:
            dec_seq = self.next_ys[0].unsqueeze(1)
        else:
            _, keys = self.sort_scores()
            hyps = [self.get_hypothesis(k) for k in keys]
            hyps = [[2] + h for h in hyps]
            dec_seq = paddle.to_tensor(hyps, dtype='int64')

        return dec_seq

    def get_hypothesis(self, k):
        """ Walk back to construct the full hypothesis. """
        hyp = []
        for j in range(len(self.prev_ks) - 1, -1, -1):
            hyp.append(self.next_ys[j+1][k])
            k = self.prev_ks[j][k]
        return list(map(lambda x: x.item(), hyp[::-1]))