program.py 24.2 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114


X
xiaoting 已提交
115
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
116 117 118 119
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
120 121 122 123
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
124 125 126
          "model on CPU"

    try:
X
xiaoting 已提交
127 128
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
129
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
130 131 132 133
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
134 135 136 137 138
            sys.exit(1)
    except Exception as e:
        pass


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
157

文幕地方's avatar
文幕地方 已提交
158 159 160 161 162 163
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
A
andyjpaddle 已提交
164
                preds[k] = paddle.to_tensor(preds[k], dtype='float32')
文幕地方's avatar
文幕地方 已提交
165 166 167 168 169 170 171
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
A
andyjpaddle 已提交
172
                preds[k] = paddle.to_tensor(preds[k], dtype='float32')
文幕地方's avatar
文幕地方 已提交
173
    else:
A
andyjpaddle 已提交
174
        preds = paddle.to_tensor(preds, dtype='float32')
文幕地方's avatar
文幕地方 已提交
175
    return preds
176

文幕地方's avatar
文幕地方 已提交
177

W
WenmuZhou 已提交
178
def train(config,
D
dyning 已提交
179 180 181
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
182 183 184 185 186 187 188 189
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
190
          log_writer=None,
S
stephon 已提交
191
          scaler=None):
W
WenmuZhou 已提交
192 193
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
194
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
195 196 197 198
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
199
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
200

D
dyning 已提交
201
    global_step = 0
202 203
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
204 205 206 207
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
208 209
        if len(valid_dataloader) == 0:
            logger.info(
210 211
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
212 213
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
214
        logger.info(
215 216
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
217
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
218 219
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
220 221
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
222 223 224 225
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
226
    model_average = False
W
WenmuZhou 已提交
227 228
    model.train()

T
tink2123 已提交
229
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
230
    extra_input_models = [
231
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN", "RobustScanner"
A
andyjpaddle 已提交
232
    ]
A
andyjpaddle 已提交
233
    extra_input = False
A
andyjpaddle 已提交
234
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
235 236 237
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
238 239
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
240
    try:
L
fix bug  
LDOUBLEV 已提交
241
        model_type = config['Architecture']['model_type']
242
    except:
L
fix bug  
LDOUBLEV 已提交
243
        model_type = None
A
andyjpaddle 已提交
244

T
tink2123 已提交
245
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
246

247 248 249 250
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
251 252
    train_reader_cost = 0.0
    train_batch_cost = 0.0
253
    reader_start = time.time()
254
    eta_meter = AverageMeter()
255 256 257

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
258

T
tink2123 已提交
259
    for epoch in range(start_epoch, epoch_num + 1):
260 261 262 263 264
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
265
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
266
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
267
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
268
            if idx >= max_iter:
W
WenmuZhou 已提交
269 270 271
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
272
            if use_srn:
T
tink2123 已提交
273
                model_average = True
S
stephon 已提交
274 275
            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
276
                with paddle.amp.auto_cast(level='O2'):
S
stephon 已提交
277 278
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
279 280
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
281 282
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
283 284 285 286 287 288
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
289
            else:
S
stephon 已提交
290 291
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
292
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
293
                    preds = model(batch)
S
stephon 已提交
294 295
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
296 297
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
298 299
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
300
            optimizer.clear_grad()
W
WenmuZhou 已提交
301

302 303
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
文幕地方's avatar
文幕地方 已提交
304
                if model_type in ['kie']:
305
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
306 307 308
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
309
                else:
A
andyjpaddle 已提交
310 311 312 313
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
314 315 316
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
317 318
                    else:
                        post_result = post_process_class(preds, batch[1])
319 320 321 322
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

323 324 325
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
326
            global_step += 1
文幕地方's avatar
文幕地方 已提交
327
            total_samples += len(images)
W
WenmuZhou 已提交
328

D
dyning 已提交
329 330
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
331 332 333 334 335 336

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

337
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
338 339
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
340

341 342 343
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
344
                logs = train_stats.log()
L
LDOUBLEV 已提交
345

346 347 348 349 350
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
351
                       'ips: {:.5f} samples/s, eta: {}'.format(
352 353 354 355 356
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
357
                logger.info(strs)
358

文幕地方's avatar
文幕地方 已提交
359
                total_samples = 0
360 361
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
362 363
            # eval
            if global_step > start_eval_step and \
364 365
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
366 367 368 369 370 371 372
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
373 374 375 376 377
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
378
                    model_type,
文幕地方's avatar
文幕地方 已提交
379 380
                    extra_input=extra_input,
                    scaler=scaler)
L
LDOUBLEV 已提交
381 382 383
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
384 385

                # logger metric
386
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
387 388
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
389

L
LDOUBLEV 已提交
390
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
391
                        main_indicator]:
L
LDOUBLEV 已提交
392
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
393 394 395 396 397 398
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
399
                        config,
W
WenmuZhou 已提交
400 401 402
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
403 404
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
405
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
406 407 408 409
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
410
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
411 412 413 414 415 416 417 418 419 420 421 422
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
423

文幕地方's avatar
文幕地方 已提交
424
            reader_start = time.time()
W
WenmuZhou 已提交
425 426 427 428 429 430
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
431
                config,
W
WenmuZhou 已提交
432 433 434
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
435 436
                epoch=epoch,
                global_step=global_step)
437

438 439
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
440

W
WenmuZhou 已提交
441 442 443 444 445 446
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
447
                config,
W
WenmuZhou 已提交
448 449 450
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
451 452
                epoch=epoch,
                global_step=global_step)
453
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
454 455
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
456

L
LDOUBLEV 已提交
457
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
458 459
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
460 461
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
462 463 464
    return


M
refine  
MissPenguin 已提交
465 466 467 468
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
469
         model_type=None,
文幕地方's avatar
文幕地方 已提交
470 471
         extra_input=False,
         scaler=None):
W
WenmuZhou 已提交
472 473 474 475
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
476 477 478 479 480
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
481 482
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
483
        for idx, batch in enumerate(valid_dataloader):
484
            if idx >= max_iter:
W
WenmuZhou 已提交
485
                break
W
fix bug  
WenmuZhou 已提交
486
            images = batch[0]
W
WenmuZhou 已提交
487
            start = time.time()
文幕地方's avatar
文幕地方 已提交
488 489 490 491 492 493 494 495 496 497

            # use amp
            if scaler:
                with paddle.amp.auto_cast(level='O2'):
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
                    else:
                        preds = model(images)
X
xiaoting 已提交
498
            else:
文幕地方's avatar
文幕地方 已提交
499 500 501 502 503 504 505
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie", 'vqa']:
                    preds = model(batch)
                else:
                    preds = model(images)

506 507 508 509 510 511
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
512 513 514
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
515
            if model_type in ['kie']:
516
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
517
            elif model_type in ['table', 'vqa']:
518 519
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
520
            else:
521 522
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
523

W
fix bug  
WenmuZhou 已提交
524
            pbar.update(1)
W
WenmuZhou 已提交
525
            total_frame += len(images)
L
LDOUBLEV 已提交
526 527
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
528

W
fix bug  
WenmuZhou 已提交
529
    pbar.close()
W
WenmuZhou 已提交
530
    model.train()
L
LDOUBLEV 已提交
531 532
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
533

T
tink2123 已提交
534

B
Bin Lu 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


584
def preprocess(is_train=False):
L
licx 已提交
585
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
586
    profiler_options = FLAGS.profiler_options
L
licx 已提交
587
    config = load_config(FLAGS.config)
588
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
589
    profile_dic = {"profiler_options": FLAGS.profiler_options}
590
    config = merge_config(config, profile_dic)
L
licx 已提交
591

W
WenmuZhou 已提交
592 593 594 595 596 597 598 599 600 601
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
602
    logger = get_logger(log_file=log_file)
L
licx 已提交
603 604 605

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
606
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
607

608 609 610 611 612 613
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
614 615
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
616
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
617
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
618
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
619
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN', 'RobustScanner'
W
WenmuZhou 已提交
620
    ]
L
licx 已提交
621

622
    if use_xpu:
X
xiaoting 已提交
623 624 625 626 627 628
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
629
    device = paddle.set_device(device)
D
dyning 已提交
630

D
dyning 已提交
631
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
632

633 634
    loggers = []

635
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
636
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
637
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
638
        log_writer = VDLLogger(vdl_writer_path)
639
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
640 641
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
642 643 644 645 646 647 648 649
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
650
        loggers.append(log_writer)
D
dyning 已提交
651
    else:
652
        log_writer = None
D
dyning 已提交
653
    print_dict(config, logger)
654 655 656 657 658 659

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
660 661
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
662
    return config, device, logger, log_writer