table_master_resnet.py 11.3 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
文幕地方's avatar
add ref  
文幕地方 已提交
14
"""
文幕地方's avatar
fix bug  
文幕地方 已提交
15
This code is refer from:
文幕地方's avatar
add ref  
文幕地方 已提交
16 17
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/backbones/table_resnet_extra.py
"""
文幕地方's avatar
文幕地方 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class BasicBlock(nn.Layer):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 gcb_config=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2D(
            inplanes,
            planes,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias_attr=False)
        self.bn1 = nn.BatchNorm2D(planes, momentum=0.9)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2D(
            planes, planes, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn2 = nn.BatchNorm2D(planes, momentum=0.9)
        self.downsample = downsample
        self.stride = stride
        self.gcb_config = gcb_config

        if self.gcb_config is not None:
            gcb_ratio = gcb_config['ratio']
            gcb_headers = gcb_config['headers']
            att_scale = gcb_config['att_scale']
            fusion_type = gcb_config['fusion_type']
            self.context_block = MultiAspectGCAttention(
                inplanes=planes,
                ratio=gcb_ratio,
                headers=gcb_headers,
                att_scale=att_scale,
                fusion_type=fusion_type)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.gcb_config is not None:
            out = self.context_block(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


def get_gcb_config(gcb_config, layer):
    if gcb_config is None or not gcb_config['layers'][layer]:
        return None
    else:
        return gcb_config


class TableResNetExtra(nn.Layer):
    def __init__(self, layers, in_channels=3, gcb_config=None):
        assert len(layers) >= 4

        super(TableResNetExtra, self).__init__()
        self.inplanes = 128
        self.conv1 = nn.Conv2D(
            in_channels,
            64,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
        self.bn1 = nn.BatchNorm2D(64)
        self.relu1 = nn.ReLU()

        self.conv2 = nn.Conv2D(
            64, 128, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn2 = nn.BatchNorm2D(128)
        self.relu2 = nn.ReLU()

        self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2)

        self.layer1 = self._make_layer(
            BasicBlock,
            256,
            layers[0],
            stride=1,
            gcb_config=get_gcb_config(gcb_config, 0))

        self.conv3 = nn.Conv2D(
            256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn3 = nn.BatchNorm2D(256)
        self.relu3 = nn.ReLU()

        self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2)

        self.layer2 = self._make_layer(
            BasicBlock,
            256,
            layers[1],
            stride=1,
            gcb_config=get_gcb_config(gcb_config, 1))

        self.conv4 = nn.Conv2D(
            256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn4 = nn.BatchNorm2D(256)
        self.relu4 = nn.ReLU()

        self.maxpool3 = nn.MaxPool2D(kernel_size=2, stride=2)

        self.layer3 = self._make_layer(
            BasicBlock,
            512,
            layers[2],
            stride=1,
            gcb_config=get_gcb_config(gcb_config, 2))

        self.conv5 = nn.Conv2D(
            512, 512, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn5 = nn.BatchNorm2D(512)
        self.relu5 = nn.ReLU()

        self.layer4 = self._make_layer(
            BasicBlock,
            512,
            layers[3],
            stride=1,
            gcb_config=get_gcb_config(gcb_config, 3))

        self.conv6 = nn.Conv2D(
            512, 512, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn6 = nn.BatchNorm2D(512)
        self.relu6 = nn.ReLU()

        self.out_channels = [256, 256, 512]

    def _make_layer(self, block, planes, blocks, stride=1, gcb_config=None):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2D(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias_attr=False),
                nn.BatchNorm2D(planes * block.expansion), )

        layers = []
        layers.append(
            block(
                self.inplanes,
                planes,
                stride,
                downsample,
                gcb_config=gcb_config))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        f = []
文幕地方's avatar
fix bug  
文幕地方 已提交
196
        x = self.conv1(x)
文幕地方's avatar
文幕地方 已提交
197 198 199 200

        x = self.bn1(x)
        x = self.relu1(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
201
        x = self.conv2(x)
文幕地方's avatar
文幕地方 已提交
202 203 204
        x = self.bn2(x)
        x = self.relu2(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
205
        x = self.maxpool1(x)
文幕地方's avatar
文幕地方 已提交
206 207
        x = self.layer1(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
208
        x = self.conv3(x)
文幕地方's avatar
文幕地方 已提交
209 210 211 212
        x = self.bn3(x)
        x = self.relu3(x)
        f.append(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
213
        x = self.maxpool2(x)
文幕地方's avatar
文幕地方 已提交
214 215
        x = self.layer2(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
216
        x = self.conv4(x)
文幕地方's avatar
文幕地方 已提交
217 218 219 220
        x = self.bn4(x)
        x = self.relu4(x)
        f.append(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
221
        x = self.maxpool3(x)
文幕地方's avatar
文幕地方 已提交
222

文幕地方's avatar
fix bug  
文幕地方 已提交
223 224
        x = self.layer3(x)
        x = self.conv5(x)
文幕地方's avatar
文幕地方 已提交
225 226 227
        x = self.bn5(x)
        x = self.relu5(x)

文幕地方's avatar
fix bug  
文幕地方 已提交
228 229
        x = self.layer4(x)
        x = self.conv6(x)
文幕地方's avatar
文幕地方 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        x = self.bn6(x)
        x = self.relu6(x)
        f.append(x)
        return f


class MultiAspectGCAttention(nn.Layer):
    def __init__(self,
                 inplanes,
                 ratio,
                 headers,
                 pooling_type='att',
                 att_scale=False,
                 fusion_type='channel_add'):
        super(MultiAspectGCAttention, self).__init__()
        assert pooling_type in ['avg', 'att']

        assert fusion_type in ['channel_add', 'channel_mul', 'channel_concat']
        assert inplanes % headers == 0 and inplanes >= 8  # inplanes must be divided by headers evenly

        self.headers = headers
        self.inplanes = inplanes
        self.ratio = ratio
        self.planes = int(inplanes * ratio)
        self.pooling_type = pooling_type
        self.fusion_type = fusion_type
        self.att_scale = False

        self.single_header_inplanes = int(inplanes / headers)

        if pooling_type == 'att':
            self.conv_mask = nn.Conv2D(
                self.single_header_inplanes, 1, kernel_size=1)
            self.softmax = nn.Softmax(axis=2)
        else:
            self.avg_pool = nn.AdaptiveAvgPool2D(1)

        if fusion_type == 'channel_add':
            self.channel_add_conv = nn.Sequential(
                nn.Conv2D(
                    self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(),
                nn.Conv2D(
                    self.planes, self.inplanes, kernel_size=1))
        elif fusion_type == 'channel_concat':
            self.channel_concat_conv = nn.Sequential(
                nn.Conv2D(
                    self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(),
                nn.Conv2D(
                    self.planes, self.inplanes, kernel_size=1))
            # for concat
            self.cat_conv = nn.Conv2D(
                2 * self.inplanes, self.inplanes, kernel_size=1)
        elif fusion_type == 'channel_mul':
            self.channel_mul_conv = nn.Sequential(
                nn.Conv2D(
                    self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(),
                nn.Conv2D(
                    self.planes, self.inplanes, kernel_size=1))

    def spatial_pool(self, x):
        batch, channel, height, width = x.shape
        if self.pooling_type == 'att':
            # [N*headers, C', H , W] C = headers * C'
            x = x.reshape([
                batch * self.headers, self.single_header_inplanes, height, width
            ])
            input_x = x

            # [N*headers, C', H * W] C = headers * C'
            # input_x = input_x.view(batch, channel, height * width)
            input_x = input_x.reshape([
                batch * self.headers, self.single_header_inplanes,
                height * width
            ])

            # [N*headers, 1, C', H * W]
            input_x = input_x.unsqueeze(1)
            # [N*headers, 1, H, W]
            context_mask = self.conv_mask(x)
            # [N*headers, 1, H * W]
            context_mask = context_mask.reshape(
                [batch * self.headers, 1, height * width])

            # scale variance
            if self.att_scale and self.headers > 1:
                context_mask = context_mask / paddle.sqrt(
                    self.single_header_inplanes)

            # [N*headers, 1, H * W]
            context_mask = self.softmax(context_mask)

            # [N*headers, 1, H * W, 1]
            context_mask = context_mask.unsqueeze(-1)
            # [N*headers, 1, C', 1] = [N*headers, 1, C', H * W] * [N*headers, 1, H * W, 1]
            context = paddle.matmul(input_x, context_mask)

            # [N, headers * C', 1, 1]
            context = context.reshape(
                [batch, self.headers * self.single_header_inplanes, 1, 1])
        else:
            # [N, C, 1, 1]
            context = self.avg_pool(x)

        return context

    def forward(self, x):
        # [N, C, 1, 1]
        context = self.spatial_pool(x)

        out = x

        if self.fusion_type == 'channel_mul':
            # [N, C, 1, 1]
            channel_mul_term = F.sigmoid(self.channel_mul_conv(context))
            out = out * channel_mul_term
        elif self.fusion_type == 'channel_add':
            # [N, C, 1, 1]
            channel_add_term = self.channel_add_conv(context)
            out = out + channel_add_term
        else:
            # [N, C, 1, 1]
            channel_concat_term = self.channel_concat_conv(context)

            # use concat
            _, C1, _, _ = channel_concat_term.shape
            N, C2, H, W = out.shape

            out = paddle.concat(
                [out, channel_concat_term.expand([-1, -1, H, W])], axis=1)
            out = self.cat_conv(out)
            out = F.layer_norm(out, [self.inplanes, H, W])
            out = F.relu(out)

        return out