predict_det.py 6.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

21 22 23 24
import cv2
import numpy as np
import time
import sys
W
WenmuZhou 已提交
25
import paddle
26

L
LDOUBLEV 已提交
27
import tools.infer.utility as utility
W
WenmuZhou 已提交
28
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
29
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
W
WenmuZhou 已提交
30 31
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
L
LDOUBLEV 已提交
32

W
WenmuZhou 已提交
33 34
logger = get_logger()

L
LDOUBLEV 已提交
35 36 37 38

class TextDetector(object):
    def __init__(self, args):
        self.det_algorithm = args.det_algorithm
littletomatodonkey's avatar
littletomatodonkey 已提交
39
        self.use_zero_copy_run = args.use_zero_copy_run
L
LDOUBLEV 已提交
40 41
        postprocess_params = {}
        if self.det_algorithm == "DB":
W
WenmuZhou 已提交
42
            pre_process_list = [{
43
                'DetResizeForTest': {
W
WenmuZhou 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
                    'limit_side_len': args.det_limit_side_len,
                    'limit_type': args.det_limit_type
                }
            }, {
                'NormalizeImage': {
                    'std': [0.229, 0.224, 0.225],
                    'mean': [0.485, 0.456, 0.406],
                    'scale': '1./255.',
                    'order': 'hwc'
                }
            }, {
                'ToCHWImage': None
            }, {
57
                'KeepKeys': {
W
WenmuZhou 已提交
58 59 60 61
                    'keep_keys': ['image', 'shape']
                }
            }]
            postprocess_params['name'] = 'DBPostProcess'
L
LDOUBLEV 已提交
62 63 64
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
65
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
L
LDOUBLEV 已提交
66 67 68 69
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

W
WenmuZhou 已提交
70 71
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
72 73 74
        self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
            args, 'det', logger)  # paddle.jit.load(args.det_model_dir)
        # self.predictor.eval()
L
LDOUBLEV 已提交
75 76

    def order_points_clockwise(self, pts):
77 78
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
L
LDOUBLEV 已提交
79
        # sort the points based on their x-coordinates
80
        """
L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

D
dyning 已提交
100
    def clip_det_res(self, points, img_height, img_width):
101
        for pno in range(points.shape[0]):
D
dyning 已提交
102 103
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
L
LDOUBLEV 已提交
104 105 106 107 108 109 110
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
D
dyning 已提交
111
            box = self.clip_det_res(box, img_height, img_width)
L
LDOUBLEV 已提交
112 113 114 115 116 117 118 119
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

120 121 122 123 124 125 126 127
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
128

L
LDOUBLEV 已提交
129 130
    def __call__(self, img):
        ori_im = img.copy()
W
WenmuZhou 已提交
131 132 133 134
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
L
LDOUBLEV 已提交
135
            return None, 0
W
WenmuZhou 已提交
136 137
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
138
        img = img.copy()
L
LDOUBLEV 已提交
139
        starttime = time.time()
140

141 142 143 144 145 146 147 148 149 150 151 152 153
        if self.use_zero_copy_run:
            self.input_tensor.copy_from_cpu(img)
            self.predictor.zero_copy_run()
        else:
            im = paddle.fluid.core.PaddleTensor(img)
            self.predictor.run([im])
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        preds = outputs[0]

        # preds = self.predictor(img)
W
WenmuZhou 已提交
154 155 156
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
        dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
L
LDOUBLEV 已提交
157 158 159 160 161 162
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
L
LDOUBLEV 已提交
163
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
164 165 166
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey 已提交
167 168 169
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
L
LDOUBLEV 已提交
170
    for image_file in image_file_list:
L
LDOUBLEV 已提交
171 172 173
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
174 175 176 177 178 179 180 181
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        print("Predict time of %s:" % image_file, elapse)
D
dyning 已提交
182
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
W
WenmuZhou 已提交
183 184 185
        img_name_pure = os.path.split(image_file)[-1]
        img_path = os.path.join(draw_img_save, "det_res_%s" % img_name_pure)
        cv2.imwrite(img_path, src_im)
186 187
    if count > 1:
        print("Avg Time:", total_time / (count - 1))