program.py 19.5 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
W
WenmuZhou 已提交
24 25 26 27 28 29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
D
dyning 已提交
32 33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
34
from ppocr.utils import profiler
D
dyning 已提交
35 36
from ppocr.data import build_dataloader
import numpy as np
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
L
LDOUBLEV 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

农夫三拳_'s avatar
农夫三拳_ 已提交
87 88
default_config = {'Global': {'debug': False, }}

L
LDOUBLEV 已提交
89 90 91 92 93 94 95 96

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
农夫三拳_'s avatar
农夫三拳_ 已提交
97
    merge_config(default_config)
L
LDOUBLEV 已提交
98 99
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
W
WenmuZhou 已提交
100
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
L
LDOUBLEV 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
119 120 121 122
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
L
LDOUBLEV 已提交
123 124 125 126 127 128 129 130
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


T
tink2123 已提交
131
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
132 133 134 135
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
T
tink2123 已提交
136 137 138 139
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
140 141 142
          "model on CPU"

    try:
T
tink2123 已提交
143 144
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
145
        if use_gpu and not paddle.is_compiled_with_cuda():
T
tink2123 已提交
146 147 148 149
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
150 151 152 153 154
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
155
def train(config,
D
dyning 已提交
156 157 158
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
159 160 161 162 163 164 165 166
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
S
stephon 已提交
167 168
          vdl_writer=None,
          scaler=None):
W
WenmuZhou 已提交
169 170
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
L
LDOUBLEV 已提交
171 172 173 174
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
175
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
176

D
dyning 已提交
177
    global_step = 0
178 179
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
180 181 182 183
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
184 185 186 187 188
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
189 190 191
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
192 193
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
194 195
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
196 197 198 199
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
200
    model_average = False
W
WenmuZhou 已提交
201 202
    model.train()

T
tink2123 已提交
203
    use_srn = config['Architecture']['algorithm'] == "SRN"
T
tink2123 已提交
204
    extra_input = config['Architecture'][
L
LDOUBLEV 已提交
205
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
206
    try:
L
fix bug  
LDOUBLEV 已提交
207
        model_type = config['Architecture']['model_type']
208
    except:
L
fix bug  
LDOUBLEV 已提交
209
        model_type = None
T
tink2123 已提交
210
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
211

W
WenmuZhou 已提交
212 213 214
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
T
tink2123 已提交
215
        start_epoch = 1
W
WenmuZhou 已提交
216

T
tink2123 已提交
217
    for epoch in range(start_epoch, epoch_num + 1):
218 219
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
W
WenmuZhou 已提交
220
        train_reader_cost = 0.0
文幕地方's avatar
文幕地方 已提交
221 222 223
        train_run_cost = 0.0
        total_samples = 0
        reader_start = time.time()
J
Jane-Ding 已提交
224 225
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
226
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
227
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
228
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
229
            if idx >= max_iter:
W
WenmuZhou 已提交
230 231 232
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
233
            if use_srn:
T
tink2123 已提交
234
                model_average = True
S
stephon 已提交
235

文幕地方's avatar
文幕地方 已提交
236
            train_start = time.time()
S
stephon 已提交
237 238 239 240 241 242 243
            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
T
tink2123 已提交
244
            else:
S
stephon 已提交
245 246
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
L
LDOUBLEV 已提交
247
                elif model_type == "kie":
L
LDOUBLEV 已提交
248
                    preds = model(batch)
S
stephon 已提交
249 250
                else:
                    preds = model(images)
W
WenmuZhou 已提交
251 252
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
253 254 255 256 257 258 259 260

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
261
            optimizer.clear_grad()
W
WenmuZhou 已提交
262

文幕地方's avatar
文幕地方 已提交
263 264
            train_run_cost += time.time() - train_start
            total_samples += len(images)
W
WenmuZhou 已提交
265

D
dyning 已提交
266 267
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
268 269 270 271 272 273

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

T
tink2123 已提交
274
            if cal_metric_during_train and model_type is not "det":  # only rec and cls need
W
WenmuZhou 已提交
275
                batch = [item.numpy() for item in batch]
L
LDOUBLEV 已提交
276
                if model_type in ['table', 'kie']:
M
MissPenguin 已提交
277 278 279 280
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
281 282
                metric = eval_class.get_metric()
                train_stats.update(metric)
W
WenmuZhou 已提交
283 284 285 286 287 288

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

289 290 291
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
292
                logs = train_stats.log()
W
WenmuZhou 已提交
293
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
W
WenmuZhou 已提交
294
                    epoch, epoch_num, global_step, logs, train_reader_cost /
文幕地方's avatar
文幕地方 已提交
295 296 297
                    print_batch_step, (train_reader_cost + train_run_cost) /
                    print_batch_step, total_samples,
                    total_samples / (train_reader_cost + train_run_cost))
W
WenmuZhou 已提交
298
                logger.info(strs)
W
WenmuZhou 已提交
299
                train_reader_cost = 0.0
文幕地方's avatar
文幕地方 已提交
300 301
                train_run_cost = 0.0
                total_samples = 0
W
WenmuZhou 已提交
302 303 304
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
T
tink2123 已提交
305 306 307 308 309 310 311
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
312 313 314 315 316
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
317
                    model_type,
T
tink2123 已提交
318
                    extra_input=extra_input)
L
LDOUBLEV 已提交
319 320 321
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
322 323 324

                # logger metric
                if vdl_writer is not None:
L
LDOUBLEV 已提交
325
                    for k, v in cur_metric.items():
W
WenmuZhou 已提交
326 327
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
L
LDOUBLEV 已提交
328 329
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
330
                        main_indicator]:
L
LDOUBLEV 已提交
331
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
332 333 334 335 336 337 338 339 340
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
341 342
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
343
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
344 345 346 347 348 349 350 351 352
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
T
tink2123 已提交
353
            optimizer.clear_grad()
文幕地方's avatar
文幕地方 已提交
354
            reader_start = time.time()
W
WenmuZhou 已提交
355 356 357 358 359 360 361 362 363
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
364 365
                epoch=epoch,
                global_step=global_step)
W
WenmuZhou 已提交
366 367 368 369 370 371 372 373 374
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
375 376
                epoch=epoch,
                global_step=global_step)
L
LDOUBLEV 已提交
377
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
378 379 380 381
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
L
LDOUBLEV 已提交
382 383 384
    return


M
refine  
MissPenguin 已提交
385 386 387 388
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
389
         model_type=None,
T
tink2123 已提交
390
         extra_input=False):
W
WenmuZhou 已提交
391 392 393 394
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
395 396 397 398 399
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
400 401
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
402
        for idx, batch in enumerate(valid_dataloader):
403
            if idx >= max_iter:
W
WenmuZhou 已提交
404
                break
W
fix bug  
WenmuZhou 已提交
405
            images = batch[0]
W
WenmuZhou 已提交
406
            start = time.time()
T
tink2123 已提交
407
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
408
                preds = model(images, data=batch[1:])
T
fix srn  
tink2123 已提交
409
            elif model_type == "kie":
L
LDOUBLEV 已提交
410
                preds = model(batch)
X
xiaoting 已提交
411
            else:
L
LDOUBLEV 已提交
412
                preds = model(images)
W
WenmuZhou 已提交
413 414 415 416
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
L
LDOUBLEV 已提交
417
            if model_type in ['table', 'kie']:
M
MissPenguin 已提交
418 419 420 421
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
L
LDOUBLEV 已提交
422

W
fix bug  
WenmuZhou 已提交
423
            pbar.update(1)
W
WenmuZhou 已提交
424
            total_frame += len(images)
L
LDOUBLEV 已提交
425 426
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
427

W
fix bug  
WenmuZhou 已提交
428
    pbar.close()
W
WenmuZhou 已提交
429
    model.train()
L
LDOUBLEV 已提交
430 431
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
432

T
tink2123 已提交
433

B
Bin Lu 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


483
def preprocess(is_train=False):
L
licx 已提交
484
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
485
    profiler_options = FLAGS.profiler_options
L
licx 已提交
486 487
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
L
LDOUBLEV 已提交
488 489
    profile_dic = {"profiler_options": FLAGS.profiler_options}
    merge_config(profile_dic)
L
licx 已提交
490

W
WenmuZhou 已提交
491 492 493 494 495 496 497 498 499 500 501
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
L
licx 已提交
502 503 504

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
T
tink2123 已提交
505
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
506

W
WenmuZhou 已提交
507 508
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
509
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
510
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
L
LDOUBLEV 已提交
511
        'SEED', 'SDMGR'
W
WenmuZhou 已提交
512
    ]
W
WenmuZhou 已提交
513 514 515 516 517
    windows_not_support_list = ['PSE']
    if platform.system() == "Windows" and alg in windows_not_support_list:
        logger.warning('{} is not support in Windows now'.format(
            windows_not_support_list))
        sys.exit()
L
licx 已提交
518

T
tink2123 已提交
519 520 521 522 523 524 525
    if use_xpu:
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
526
    device = paddle.set_device(device)
D
dyning 已提交
527

D
dyning 已提交
528
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
529

D
dyning 已提交
530 531
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
L
fix bug  
LDOUBLEV 已提交
532
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
533 534 535 536 537 538 539 540 541
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer