operators.py 14.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np


class DecodeImage(object):
    """ decode image """

    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
        img = cv2.imdecode(img, 1)
L
LDOUBLEV 已提交
45 46
        if img is None:
            return None
W
WenmuZhou 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


T
Topdu 已提交
60 61 62
class NRTRDecodeImage(object):
    """ decode image """

z37757's avatar
z37757 已提交
63 64 65 66 67
    def __init__(self,
                 img_mode='RGB',
                 channel_first=False,
                 ignore_orientation=False,
                 **kwargs):
T
Topdu 已提交
68 69
        self.img_mode = img_mode
        self.channel_first = channel_first
z37757's avatar
z37757 已提交
70
        self.ignore_orientation = ignore_orientation
T
Topdu 已提交
71 72 73 74 75 76 77 78 79 80 81

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')

z37757's avatar
z37757 已提交
82 83 84 85 86
        if self.ignore_orientation:
            img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
                               cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
T
Topdu 已提交
87 88 89 90 91 92 93 94

        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]
T
tink2123 已提交
95
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
T
Topdu 已提交
96 97 98 99 100
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data['image'] = img
        return data

T
tink2123 已提交
101

W
WenmuZhou 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
            img.astype('float32') * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


T
tink2123 已提交
145 146
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
T
tink2123 已提交
147
        import fasttext
T
tink2123 已提交
148 149 150 151 152 153 154 155 156
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


D
dyning 已提交
157
class KeepKeys(object):
W
WenmuZhou 已提交
158 159 160 161 162 163 164 165 166 167
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


L
LDOUBLEV 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
182 183
        if 'polys' in data:
            text_polys = data['polys']
L
LDOUBLEV 已提交
184 185

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
186 187 188 189 190 191 192 193
        if 'polys' in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data['polys'] = np.array(new_boxes, dtype=np.float32)
L
LDOUBLEV 已提交
194 195 196 197
        data['image'] = img_resize
        return data


W
WenmuZhou 已提交
198 199 200 201 202 203 204
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
文幕地方's avatar
文幕地方 已提交
205
        elif 'limit_side_len' in kwargs:
W
WenmuZhou 已提交
206 207
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
文幕地方's avatar
文幕地方 已提交
208
        elif 'resize_long' in kwargs:
M
MissPenguin 已提交
209 210
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
W
WenmuZhou 已提交
211 212 213 214 215 216
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
M
MissPenguin 已提交
217
        src_h, src_w, _ = img.shape
W
WenmuZhou 已提交
218 219

        if self.resize_type == 0:
M
MissPenguin 已提交
220 221 222 223
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
W
WenmuZhou 已提交
224
        else:
M
MissPenguin 已提交
225 226
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
W
WenmuZhou 已提交
227
        data['image'] = img
M
MissPenguin 已提交
228
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
W
WenmuZhou 已提交
229 230 231 232 233
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
M
MissPenguin 已提交
234 235
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
W
WenmuZhou 已提交
236
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
M
MissPenguin 已提交
237 238
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
W
WenmuZhou 已提交
239 240 241 242 243 244 245 246 247 248

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
W
WenmuZhou 已提交
249
        h, w, c = img.shape
W
WenmuZhou 已提交
250 251 252 253 254 255 256 257 258 259

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
W
WenmuZhou 已提交
260
        elif self.limit_type == 'min':
W
WenmuZhou 已提交
261 262 263 264 265 266 267
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
W
WenmuZhou 已提交
268
        elif self.limit_type == 'resize_long':
L
LDOUBLEV 已提交
269
            ratio = float(limit_side_len) / max(h, w)
W
WenmuZhou 已提交
270 271
        else:
            raise Exception('not support limit type, image ')
W
WenmuZhou 已提交
272 273 274
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

Z
zhoujun 已提交
275 276
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
W
WenmuZhou 已提交
277 278 279 280 281 282 283 284

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
M
MissPenguin 已提交
285 286 287
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
L
LDOUBLEV 已提交
288

M
MissPenguin 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
J
Jethong 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

334
        h, w, _ = im.shape
J
Jethong 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)
L
add kie  
LDOUBLEV 已提交
380 381 382 383 384 385 386 387 388 389 390 391


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
            'img_scale'][1]

    def __call__(self, data):
        img = data['image']
        points = data['points']
        src_h, src_w, _ = img.shape
L
debug  
LDOUBLEV 已提交
392 393
        im_resized, scale_factor, [ratio_h, ratio_w
                                   ], [new_h, new_w] = self.resize_image(img)
L
add kie  
LDOUBLEV 已提交
394 395 396 397 398
        resize_points = self.resize_boxes(img, points, scale_factor)
        data['ori_image'] = img
        data['ori_boxes'] = points
        data['points'] = resize_points
        data['image'] = im_resized
L
debug  
LDOUBLEV 已提交
399
        data['shape'] = np.array([new_h, new_w])
L
add kie  
LDOUBLEV 已提交
400 401 402
        return data

    def resize_image(self, img):
L
debug  
LDOUBLEV 已提交
403
        norm_img = np.zeros([1024, 1024, 3], dtype='float32')
L
add kie  
LDOUBLEV 已提交
404 405 406 407 408 409
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
L
debug  
LDOUBLEV 已提交
410 411 412 413 414 415
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
            scale_factor) + 0.5)
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
L
add kie  
LDOUBLEV 已提交
416 417 418 419 420 421
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array(
            [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
L
debug  
LDOUBLEV 已提交
422
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
L
add kie  
LDOUBLEV 已提交
423 424 425 426 427 428 429

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points