infer_vqa_token_ser_re.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
26
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
27 28 29 30 31 32 33 34 35 36 37 38 39 40

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import json
import paddle
import paddle.distributed as dist

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.visual import draw_re_results
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps, print_dict
41
from tools.program import ArgsParser, load_config, merge_config
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
from tools.infer_vqa_token_ser import SerPredictor


class ReArgsParser(ArgsParser):
    def __init__(self):
        super(ReArgsParser, self).__init__()
        self.add_argument(
            "-c_ser", "--config_ser", help="ser configuration file to use")
        self.add_argument(
            "-o_ser",
            "--opt_ser",
            nargs='+',
            help="set ser configuration options ")

    def parse_args(self, argv=None):
        args = super(ReArgsParser, self).parse_args(argv)
        assert args.config_ser is not None, \
            "Please specify --config_ser=ser_configure_file_path."
        args.opt_ser = self._parse_opt(args.opt_ser)
        return args


def make_input(ser_inputs, ser_results):
    entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2}

    entities = ser_inputs[8][0]
    ser_results = ser_results[0]
    assert len(entities) == len(ser_results)

    # entities
    start = []
    end = []
    label = []
    entity_idx_dict = {}
    for i, (res, entity) in enumerate(zip(ser_results, entities)):
        if res['pred'] == 'O':
            continue
        entity_idx_dict[len(start)] = i
        start.append(entity['start'])
        end.append(entity['end'])
        label.append(entities_labels[res['pred']])
    entities = dict(start=start, end=end, label=label)

    # relations
    head = []
    tail = []
    for i in range(len(entities["label"])):
        for j in range(len(entities["label"])):
            if entities["label"][i] == 1 and entities["label"][j] == 2:
                head.append(i)
                tail.append(j)

    relations = dict(head=head, tail=tail)

    batch_size = ser_inputs[0].shape[0]
    entities_batch = []
    relations_batch = []
    entity_idx_dict_batch = []
    for b in range(batch_size):
        entities_batch.append(entities)
        relations_batch.append(relations)
        entity_idx_dict_batch.append(entity_idx_dict)

    ser_inputs[8] = entities_batch
    ser_inputs.append(relations_batch)
文幕地方's avatar
文幕地方 已提交
107
    # remove ocr_info segment_offset_id and label in ser input
108 109
    ser_inputs.pop(7)
    ser_inputs.pop(6)
110
    ser_inputs.pop(5)
111 112 113 114 115
    return ser_inputs, entity_idx_dict_batch


class SerRePredictor(object):
    def __init__(self, config, ser_config):
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118 119
        global_config = config['Global']
        if "infer_mode" in global_config:
            ser_config["Global"]["infer_mode"] = global_config["infer_mode"]

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        self.ser_engine = SerPredictor(ser_config)

        #  init re model 

        # build post process
        self.post_process_class = build_post_process(config['PostProcess'],
                                                     global_config)

        # build model
        self.model = build_model(config['Architecture'])

        load_model(
            config, self.model, model_type=config['Architecture']["model_type"])

        self.model.eval()

littletomatodonkey's avatar
littletomatodonkey 已提交
136 137
    def __call__(self, data):
        ser_results, ser_inputs = self.ser_engine(data)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results)
        preds = self.model(re_input)
        post_result = self.post_process_class(
            preds,
            ser_results=ser_results,
            entity_idx_dict_batch=entity_idx_dict_batch)
        return post_result


def preprocess():
    FLAGS = ReArgsParser().parse_args()
    config = load_config(FLAGS.config)
    config = merge_config(config, FLAGS.opt)

    ser_config = load_config(FLAGS.config_ser)
    ser_config = merge_config(ser_config, FLAGS.opt_ser)

Z
zhoujun 已提交
155
    logger = get_logger()
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']

    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)

    logger.info('{} re config {}'.format('*' * 10, '*' * 10))
    print_dict(config, logger)
    logger.info('\n')
    logger.info('{} ser config {}'.format('*' * 10, '*' * 10))
    print_dict(ser_config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, ser_config, device, logger


if __name__ == '__main__':
    config, ser_config, device, logger = preprocess()
    os.makedirs(config['Global']['save_res_path'], exist_ok=True)

    ser_re_engine = SerRePredictor(config, ser_config)

littletomatodonkey's avatar
littletomatodonkey 已提交
179 180 181 182 183 184 185
    if config["Global"].get("infer_mode", None) is False:
        data_dir = config['Eval']['dataset']['data_dir']
        with open(config['Global']['infer_img'], "rb") as f:
            infer_imgs = f.readlines()
    else:
        infer_imgs = get_image_file_list(config['Global']['infer_img'])

186 187 188 189 190
    with open(
            os.path.join(config['Global']['save_res_path'],
                         "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey 已提交
191 192 193 194 195 196 197 198 199 200
        for idx, info in enumerate(infer_imgs):
            if config["Global"].get("infer_mode", None) is False:
                data_line = info.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
                img_path = os.path.join(data_dir, substr[0])
                data = {'img_path': img_path, 'label': substr[1]}
            else:
                img_path = info
                data = {'img_path': img_path}

201 202
            save_img_path = os.path.join(
                config['Global']['save_res_path'],
203
                os.path.splitext(os.path.basename(img_path))[0] + "_ser_re.jpg")
204

littletomatodonkey's avatar
littletomatodonkey 已提交
205
            result = ser_re_engine(data)
206 207 208
            result = result[0]
            fout.write(img_path + "\t" + json.dumps(
                {
209
                    "ser_result": result,
210 211 212
                }, ensure_ascii=False) + "\n")
            img_res = draw_re_results(img_path, result)
            cv2.imwrite(save_img_path, img_res)
文幕地方's avatar
文幕地方 已提交
213

214
            logger.info("process: [{}/{}], save result to {}".format(
文幕地方's avatar
文幕地方 已提交
215
                idx, len(infer_imgs), save_img_path))