random_crop_data.py 7.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
# -*- coding:utf-8 -*- 

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2
import random


def is_poly_in_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
        return False
    if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
        return False
    return True


def is_poly_outside_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
        return True
    if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
        return True
    return False


def split_regions(axis):
    regions = []
    min_axis = 0
    for i in range(1, axis.shape[0]):
        if axis[i] != axis[i - 1] + 1:
            region = axis[min_axis:i]
            min_axis = i
            regions.append(region)
    return regions


def random_select(axis, max_size):
    xx = np.random.choice(axis, size=2)
    xmin = np.min(xx)
    xmax = np.max(xx)
    xmin = np.clip(xmin, 0, max_size - 1)
    xmax = np.clip(xmax, 0, max_size - 1)
    return xmin, xmax


def region_wise_random_select(regions, max_size):
    selected_index = list(np.random.choice(len(regions), 2))
    selected_values = []
    for index in selected_index:
        axis = regions[index]
        xx = int(np.random.choice(axis, size=1))
        selected_values.append(xx)
    xmin = min(selected_values)
    xmax = max(selected_values)
    return xmin, xmax


def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
    h, w, _ = im.shape
    h_array = np.zeros(h, dtype=np.int32)
    w_array = np.zeros(w, dtype=np.int32)
    for points in text_polys:
        points = np.round(points, decimals=0).astype(np.int32)
        minx = np.min(points[:, 0])
        maxx = np.max(points[:, 0])
        w_array[minx:maxx] = 1
        miny = np.min(points[:, 1])
        maxy = np.max(points[:, 1])
        h_array[miny:maxy] = 1
    # ensure the cropped area not across a text
    h_axis = np.where(h_array == 0)[0]
    w_axis = np.where(w_array == 0)[0]

    if len(h_axis) == 0 or len(w_axis) == 0:
        return 0, 0, w, h

    h_regions = split_regions(h_axis)
    w_regions = split_regions(w_axis)

    for i in range(max_tries):
        if len(w_regions) > 1:
            xmin, xmax = region_wise_random_select(w_regions, w)
        else:
            xmin, xmax = random_select(w_axis, w)
        if len(h_regions) > 1:
            ymin, ymax = region_wise_random_select(h_regions, h)
        else:
            ymin, ymax = random_select(h_axis, h)

        if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
            # area too small
            continue
        num_poly_in_rect = 0
        for poly in text_polys:
            if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
                                        ymax - ymin):
                num_poly_in_rect += 1
                break

        if num_poly_in_rect > 0:
            return xmin, ymin, xmax - xmin, ymax - ymin

    return 0, 0, w, h


class EastRandomCropData(object):
    def __init__(self,
                 size=(640, 640),
                 max_tries=10,
                 min_crop_side_ratio=0.1,
                 keep_ratio=True,
                 **kwargs):
        self.size = size
        self.max_tries = max_tries
        self.min_crop_side_ratio = min_crop_side_ratio
        self.keep_ratio = keep_ratio

    def __call__(self, data):
        img = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']
        texts = data['texts']
        all_care_polys = [
            text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
        ]
        # 计算crop区域
        crop_x, crop_y, crop_w, crop_h = crop_area(
            img, all_care_polys, self.min_crop_side_ratio, self.max_tries)
        # crop 图片 保持比例填充
        scale_w = self.size[0] / crop_w
        scale_h = self.size[1] / crop_h
        scale = min(scale_w, scale_h)
        h = int(crop_h * scale)
        w = int(crop_w * scale)
        if self.keep_ratio:
            padimg = np.zeros((self.size[1], self.size[0], img.shape[2]),
                              img.dtype)
            padimg[:h, :w] = cv2.resize(
                img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
            img = padimg
        else:
            img = cv2.resize(
                img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
                tuple(self.size))
        # crop 文本框
        text_polys_crop = []
        ignore_tags_crop = []
        texts_crop = []
        for poly, text, tag in zip(text_polys, texts, ignore_tags):
            poly = ((poly - (crop_x, crop_y)) * scale).tolist()
            if not is_poly_outside_rect(poly, 0, 0, w, h):
                text_polys_crop.append(poly)
                ignore_tags_crop.append(tag)
                texts_crop.append(text)
        data['image'] = img
        data['polys'] = np.array(text_polys_crop)
        data['ignore_tags'] = ignore_tags_crop
        data['texts'] = texts_crop
        return data


W
WenmuZhou 已提交
167 168
class RandomCropImgMask(object):
    def __init__(self, size, main_key, crop_keys, p=3 / 8, **kwargs):
W
WenmuZhou 已提交
169
        self.size = size
W
WenmuZhou 已提交
170 171 172
        self.main_key = main_key
        self.crop_keys = crop_keys
        self.p = p
W
WenmuZhou 已提交
173 174

    def __call__(self, data):
W
WenmuZhou 已提交
175
        image = data['image']
W
WenmuZhou 已提交
176

W
WenmuZhou 已提交
177
        h, w = image.shape[0:2]
W
WenmuZhou 已提交
178 179
        th, tw = self.size
        if w == tw and h == th:
W
WenmuZhou 已提交
180
            return data
W
WenmuZhou 已提交
181

W
WenmuZhou 已提交
182 183 184 185
        mask = data[self.main_key]
        if np.max(mask) > 0 and random.random() > self.p:
            # make sure to crop the text region
            tl = np.min(np.where(mask > 0), axis=1) - (th, tw)
W
WenmuZhou 已提交
186
            tl[tl < 0] = 0
W
WenmuZhou 已提交
187
            br = np.max(np.where(mask > 0), axis=1) - (th, tw)
W
WenmuZhou 已提交
188
            br[br < 0] = 0
W
WenmuZhou 已提交
189

W
WenmuZhou 已提交
190 191 192
            br[0] = min(br[0], h - th)
            br[1] = min(br[1], w - tw)

W
WenmuZhou 已提交
193 194
            i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
            j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
W
WenmuZhou 已提交
195
        else:
W
WenmuZhou 已提交
196 197
            i = random.randint(0, h - th) if h - th > 0 else 0
            j = random.randint(0, w - tw) if w - tw > 0 else 0
W
WenmuZhou 已提交
198 199

        # return i, j, th, tw
W
WenmuZhou 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        for k in data:
            if k in self.crop_keys:
                if len(data[k].shape) == 3:
                    if np.argmin(data[k].shape) == 0:
                        img = data[k][:, i:i + th, j:j + tw]
                        if img.shape[1] != img.shape[2]:
                            a = 1
                    elif np.argmin(data[k].shape) == 2:
                        img = data[k][i:i + th, j:j + tw, :]
                        if img.shape[1] != img.shape[0]:
                            a = 1
                    else:
                        img = data[k]
                else:
                    img = data[k][i:i + th, j:j + tw]
                    if img.shape[0] != img.shape[1]:
                        a = 1
                data[k] = img
W
WenmuZhou 已提交
218
        return data