db_fpn.py 14.5 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
L
LDOUBLEV 已提交
23
import os
L
fix det  
LDOUBLEV 已提交
24 25
import sys

L
fix  
LDOUBLEV 已提交
26 27 28 29
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

L
LDOUBLEV 已提交
30 31 32
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule


L
LDOUBLEV 已提交
33
class DSConv(nn.Layer):
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41 42
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding,
                 stride=1,
                 groups=None,
                 if_act=True,
                 act="relu"):
L
LDOUBLEV 已提交
43
        super(DSConv, self).__init__()
L
LDOUBLEV 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        if groups == None:
            groups = in_channels
        self.if_act = if_act
        self.act = act
        self.conv1 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)

        self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None)

        self.conv2 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=int(in_channels * 4),
            kernel_size=1,
            stride=1,
            bias_attr=False)

        self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None)

        self.conv3 = nn.Conv2D(
            in_channels=int(in_channels * 4),
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            bias_attr=False)
        self._c = [in_channels, out_channels]
        if in_channels != out_channels:
            self.conv_end = nn.Conv2D(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                bias_attr=False)

    def forward(self, inputs):

        x = self.conv1(inputs)
        x = self.bn1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
            elif self.act == "hardswish":
                x = F.hardswish(x)
            else:
                print("The activation function({}) is selected incorrectly.".
                      format(self.act))
                exit()

        x = self.conv3(x)
        if self._c[0] != self._c[1]:
            x = x + self.conv_end(inputs)
        return x
W
WenmuZhou 已提交
104 105


D
dyning 已提交
106
class DBFPN(nn.Layer):
W
WenmuZhou 已提交
107
    def __init__(self, in_channels, out_channels, **kwargs):
D
dyning 已提交
108
        super(DBFPN, self).__init__()
W
WenmuZhou 已提交
109
        self.out_channels = out_channels
W
WenmuZhou 已提交
110
        weight_attr = paddle.nn.initializer.KaimingUniform()
W
WenmuZhou 已提交
111

D
dyning 已提交
112
        self.in2_conv = nn.Conv2D(
W
WenmuZhou 已提交
113 114 115
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
116
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
117
            bias_attr=False)
D
dyning 已提交
118
        self.in3_conv = nn.Conv2D(
W
WenmuZhou 已提交
119 120 121
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
122
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
123
            bias_attr=False)
D
dyning 已提交
124
        self.in4_conv = nn.Conv2D(
W
WenmuZhou 已提交
125 126 127
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
128
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
129
            bias_attr=False)
D
dyning 已提交
130
        self.in5_conv = nn.Conv2D(
W
WenmuZhou 已提交
131 132 133
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
134
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
135
            bias_attr=False)
D
dyning 已提交
136
        self.p5_conv = nn.Conv2D(
W
WenmuZhou 已提交
137 138 139 140
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
141
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
142
            bias_attr=False)
D
dyning 已提交
143
        self.p4_conv = nn.Conv2D(
W
WenmuZhou 已提交
144 145 146 147
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
148
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
149
            bias_attr=False)
D
dyning 已提交
150
        self.p3_conv = nn.Conv2D(
W
WenmuZhou 已提交
151 152 153 154
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
155
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
156
            bias_attr=False)
D
dyning 已提交
157
        self.p2_conv = nn.Conv2D(
W
WenmuZhou 已提交
158 159 160 161
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
162
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
163 164 165 166 167 168 169 170 171 172
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

W
WenmuZhou 已提交
173 174 175 176 177 178
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
W
WenmuZhou 已提交
179 180 181 182 183

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
W
WenmuZhou 已提交
184 185 186
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
W
WenmuZhou 已提交
187 188 189

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
L
LDOUBLEV 已提交
190 191 192 193 194 195


class CALayer(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
        super(CALayer, self).__init__()
        weight_attr = paddle.nn.initializer.KaimingUniform()
L
fix  
LDOUBLEV 已提交
196
        self.out_channels = out_channels
L
LDOUBLEV 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


class CAFPN(nn.Layer):
L
fix det  
LDOUBLEV 已提交
217
    def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
L
LDOUBLEV 已提交
218
        super(CAFPN, self).__init__()
L
fix det  
LDOUBLEV 已提交
219
        self.out_channels = out_channels
L
LDOUBLEV 已提交
220 221
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
L
LDOUBLEV 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

        for i in range(len(in_channels)):
            self.ins_conv.append(
                CALayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                CALayer(
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
L
LDOUBLEV 已提交
263 264 265 266 267 268 269 270


class FEPAN(nn.Layer):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(FEPAN, self).__init__()
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

L
LDOUBLEV 已提交
271 272
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
L
LDOUBLEV 已提交
273
        # pan head
L
LDOUBLEV 已提交
274 275
        self.pan_head_conv = nn.LayerList()
        self.pan_lat_conv = nn.LayerList()
L
LDOUBLEV 已提交
276 277 278 279

        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
L
LDOUBLEV 已提交
280
                    in_channels=in_channels[i],
L
LDOUBLEV 已提交
281 282 283 284 285 286
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
L
LDOUBLEV 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                nn.Conv2D(
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
                nn.Conv2D(
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

        pan3 = f3 + self.pan_head_conv[0](f2)
        pan4 = f4 + self.pan_head_conv[1](pan3)
        pan5 = f5 + self.pan_head_conv[2](pan4)

        p2 = self.pan_lat_conv[0](f2)
        p3 = self.pan_lat_conv[1](pan3)
        p4 = self.pan_lat_conv[2](pan4)
        p5 = self.pan_lat_conv[3](pan5)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse


class FEPANLite(nn.Layer):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(FEPANLite, self).__init__()
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
        # pan head
        self.pan_head_conv = nn.LayerList()
        self.pan_lat_conv = nn.LayerList()

        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
                    in_channels=in_channels[i],
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
                DSConv(
L
LDOUBLEV 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
L
LDOUBLEV 已提交
389

L
LDOUBLEV 已提交
390
            self.pan_lat_conv.append(
L
LDOUBLEV 已提交
391
                DSConv(
L
LDOUBLEV 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

L
LDOUBLEV 已提交
417 418 419
        pan3 = f3 + self.pan_head_conv[0](f2)
        pan4 = f4 + self.pan_head_conv[1](pan3)
        pan5 = f5 + self.pan_head_conv[2](pan4)
L
LDOUBLEV 已提交
420

L
LDOUBLEV 已提交
421 422 423 424
        p2 = self.pan_lat_conv[0](f2)
        p3 = self.pan_lat_conv[1](pan3)
        p4 = self.pan_lat_conv[2](pan4)
        p5 = self.pan_lat_conv[3](pan5)
L
LDOUBLEV 已提交
425 426 427 428 429 430 431

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse