rec_aster_head.py 15.5 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tink2123 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/attention_recognition_head.py
"""
T
tink2123 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

import paddle
from paddle import nn
from paddle.nn import functional as F


class AsterHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 sDim,
                 attDim,
                 max_len_labels,
                 time_step=25,
                 beam_width=5,
                 **kwargs):
        super(AsterHead, self).__init__()
        self.num_classes = out_channels
        self.in_planes = in_channels
        self.sDim = sDim
        self.attDim = attDim
        self.max_len_labels = max_len_labels
        self.decoder = AttentionRecognitionHead(in_channels, out_channels, sDim,
                                                attDim, max_len_labels)
        self.time_step = time_step
        self.embeder = Embedding(self.time_step, in_channels)
        self.beam_width = beam_width
T
tink2123 已提交
50
        self.eos = self.num_classes - 3
T
tink2123 已提交
51 52 53 54 55 56

    def forward(self, x, targets=None, embed=None):
        return_dict = {}
        embedding_vectors = self.embeder(x)

        if self.training:
T
tink2123 已提交
57
            rec_targets, rec_lengths, _ = targets
T
tink2123 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
            rec_pred = self.decoder([x, rec_targets, rec_lengths],
                                    embedding_vectors)
            return_dict['rec_pred'] = rec_pred
            return_dict['embedding_vectors'] = embedding_vectors
        else:
            rec_pred, rec_pred_scores = self.decoder.beam_search(
                x, self.beam_width, self.eos, embedding_vectors)
            return_dict['rec_pred'] = rec_pred
            return_dict['rec_pred_scores'] = rec_pred_scores
            return_dict['embedding_vectors'] = embedding_vectors

        return return_dict


class Embedding(nn.Layer):
    def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
        super(Embedding, self).__init__()
        self.in_timestep = in_timestep
        self.in_planes = in_planes
        self.embed_dim = embed_dim
        self.mid_dim = mid_dim
        self.eEmbed = nn.Linear(
            in_timestep * in_planes,
            self.embed_dim)  # Embed encoder output to a word-embedding like

    def forward(self, x):
        x = paddle.reshape(x, [paddle.shape(x)[0], -1])
        x = self.eEmbed(x)
        return x


class AttentionRecognitionHead(nn.Layer):
    """
  input: [b x 16 x 64 x in_planes]
  output: probability sequence: [b x T x num_classes]
  """

    def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):
        super(AttentionRecognitionHead, self).__init__()
        self.num_classes = out_channels  # this is the output classes. So it includes the <EOS>.
        self.in_planes = in_channels
        self.sDim = sDim
        self.attDim = attDim
        self.max_len_labels = max_len_labels

        self.decoder = DecoderUnit(
            sDim=sDim, xDim=in_channels, yDim=self.num_classes, attDim=attDim)

    def forward(self, x, embed):
        x, targets, lengths = x
        batch_size = paddle.shape(x)[0]
        # Decoder
        state = self.decoder.get_initial_state(embed)
        outputs = []
        for i in range(max(lengths)):
            if i == 0:
                y_prev = paddle.full(
                    shape=[batch_size], fill_value=self.num_classes)
            else:
                y_prev = targets[:, i - 1]
            output, state = self.decoder(x, state, y_prev)
            outputs.append(output)
        outputs = paddle.concat([_.unsqueeze(1) for _ in outputs], 1)
        return outputs

    # inference stage.
    def sample(self, x):
        x, _, _ = x
        batch_size = x.size(0)
        # Decoder
        state = paddle.zeros([1, batch_size, self.sDim])

        predicted_ids, predicted_scores = [], []
        for i in range(self.max_len_labels):
            if i == 0:
                y_prev = paddle.full(
                    shape=[batch_size], fill_value=self.num_classes)
            else:
                y_prev = predicted

            output, state = self.decoder(x, state, y_prev)
            output = F.softmax(output, axis=1)
            score, predicted = output.max(1)
            predicted_ids.append(predicted.unsqueeze(1))
            predicted_scores.append(score.unsqueeze(1))
        predicted_ids = paddle.concat([predicted_ids, 1])
        predicted_scores = paddle.concat([predicted_scores, 1])
        # return predicted_ids.squeeze(), predicted_scores.squeeze()
        return predicted_ids, predicted_scores

T
tink2123 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    def beam_search(self, x, beam_width, eos, embed):
        def _inflate(tensor, times, dim):
            repeat_dims = [1] * tensor.dim()
            repeat_dims[dim] = times
            output = paddle.tile(tensor, repeat_dims)
            return output

        # https://github.com/IBM/pytorch-seq2seq/blob/fede87655ddce6c94b38886089e05321dc9802af/seq2seq/models/TopKDecoder.py
        batch_size, l, d = x.shape
        x = paddle.tile(
            paddle.transpose(
                x.unsqueeze(1), perm=[1, 0, 2, 3]), [beam_width, 1, 1, 1])
        inflated_encoder_feats = paddle.reshape(
            paddle.transpose(
                x, perm=[1, 0, 2, 3]), [-1, l, d])

        # Initialize the decoder
        state = self.decoder.get_initial_state(embed, tile_times=beam_width)

        pos_index = paddle.reshape(
            paddle.arange(batch_size) * beam_width, shape=[-1, 1])

        # Initialize the scores
        sequence_scores = paddle.full(
            shape=[batch_size * beam_width, 1], fill_value=-float('Inf'))
        index = [i * beam_width for i in range(0, batch_size)]
        sequence_scores[index] = 0.0

        # Initialize the input vector
        y_prev = paddle.full(
            shape=[batch_size * beam_width], fill_value=self.num_classes)

        # Store decisions for backtracking
        stored_scores = list()
        stored_predecessors = list()
        stored_emitted_symbols = list()

        for i in range(self.max_len_labels):
            output, state = self.decoder(inflated_encoder_feats, state, y_prev)
            state = paddle.unsqueeze(state, axis=0)
            log_softmax_output = paddle.nn.functional.log_softmax(
                output, axis=1)

            sequence_scores = _inflate(sequence_scores, self.num_classes, 1)
            sequence_scores += log_softmax_output
            scores, candidates = paddle.topk(
                paddle.reshape(sequence_scores, [batch_size, -1]),
                beam_width,
                axis=1)

            # Reshape input = (bk, 1) and sequence_scores = (bk, 1)
            y_prev = paddle.reshape(
                candidates % self.num_classes, shape=[batch_size * beam_width])
            sequence_scores = paddle.reshape(
                scores, shape=[batch_size * beam_width, 1])

            # Update fields for next timestep
            pos_index = paddle.expand_as(pos_index, candidates)
            predecessors = paddle.cast(
                candidates / self.num_classes + pos_index, dtype='int64')
            predecessors = paddle.reshape(
                predecessors, shape=[batch_size * beam_width, 1])
            state = paddle.index_select(
                state, index=predecessors.squeeze(), axis=1)

            # Update sequence socres and erase scores for <eos> symbol so that they aren't expanded
            stored_scores.append(sequence_scores.clone())
            y_prev = paddle.reshape(y_prev, shape=[-1, 1])
            eos_prev = paddle.full_like(y_prev, fill_value=eos)
            mask = eos_prev == y_prev
            mask = paddle.nonzero(mask)
            if mask.dim() > 0:
                sequence_scores = sequence_scores.numpy()
                mask = mask.numpy()
                sequence_scores[mask] = -float('inf')
                sequence_scores = paddle.to_tensor(sequence_scores)

            # Cache results for backtracking
            stored_predecessors.append(predecessors)
            y_prev = paddle.squeeze(y_prev)
            stored_emitted_symbols.append(y_prev)

        # Do backtracking to return the optimal values
        #====== backtrak ======#
        # Initialize return variables given different types
        p = list()
        l = [[self.max_len_labels] * beam_width for _ in range(batch_size)
             ]  # Placeholder for lengths of top-k sequences

        # the last step output of the beams are not sorted
        # thus they are sorted here
        sorted_score, sorted_idx = paddle.topk(
            paddle.reshape(
                stored_scores[-1], shape=[batch_size, beam_width]),
            beam_width)

        # initialize the sequence scores with the sorted last step beam scores
        s = sorted_score.clone()

        batch_eos_found = [0] * batch_size  # the number of EOS found
        # in the backward loop below for each batch
        t = self.max_len_labels - 1
        # initialize the back pointer with the sorted order of the last step beams.
        # add pos_index for indexing variable with b*k as the first dimension.
        t_predecessors = paddle.reshape(
            sorted_idx + pos_index.expand_as(sorted_idx),
            shape=[batch_size * beam_width])
        while t >= 0:
            # Re-order the variables with the back pointer
            current_symbol = paddle.index_select(
                stored_emitted_symbols[t], index=t_predecessors, axis=0)
            t_predecessors = paddle.index_select(
                stored_predecessors[t].squeeze(), index=t_predecessors, axis=0)
            eos_indices = stored_emitted_symbols[t] == eos
            eos_indices = paddle.nonzero(eos_indices)

            if eos_indices.dim() > 0:
                for i in range(eos_indices.shape[0] - 1, -1, -1):
                    # Indices of the EOS symbol for both variables
                    # with b*k as the first dimension, and b, k for
                    # the first two dimensions
                    idx = eos_indices[i]
                    b_idx = int(idx[0] / beam_width)
                    # The indices of the replacing position
                    # according to the replacement strategy noted above
                    res_k_idx = beam_width - (batch_eos_found[b_idx] %
                                              beam_width) - 1
                    batch_eos_found[b_idx] += 1
                    res_idx = b_idx * beam_width + res_k_idx

                    # Replace the old information in return variables
                    # with the new ended sequence information
                    t_predecessors[res_idx] = stored_predecessors[t][idx[0]]
                    current_symbol[res_idx] = stored_emitted_symbols[t][idx[0]]
                    s[b_idx, res_k_idx] = stored_scores[t][idx[0], 0]
                    l[b_idx][res_k_idx] = t + 1

            # record the back tracked results
            p.append(current_symbol)
            t -= 1

        # Sort and re-order again as the added ended sequences may change
        # the order (very unlikely)
        s, re_sorted_idx = s.topk(beam_width)
        for b_idx in range(batch_size):
            l[b_idx] = [
                l[b_idx][k_idx.item()] for k_idx in re_sorted_idx[b_idx, :]
            ]

        re_sorted_idx = paddle.reshape(
            re_sorted_idx + pos_index.expand_as(re_sorted_idx),
            [batch_size * beam_width])

        # Reverse the sequences and re-order at the same time
        # It is reversed because the backtracking happens in reverse time order
        p = [
            paddle.reshape(
                paddle.index_select(step, re_sorted_idx, 0),
                shape=[batch_size, beam_width, -1]) for step in reversed(p)
        ]
        p = paddle.concat(p, -1)[:, 0, :]
        return p, paddle.ones_like(p)

T
tink2123 已提交
311 312 313 314 315 316 317 318 319

class AttentionUnit(nn.Layer):
    def __init__(self, sDim, xDim, attDim):
        super(AttentionUnit, self).__init__()

        self.sDim = sDim
        self.xDim = xDim
        self.attDim = attDim

T
tink2123 已提交
320 321 322
        self.sEmbed = nn.Linear(sDim, attDim)
        self.xEmbed = nn.Linear(xDim, attDim)
        self.wEmbed = nn.Linear(attDim, 1)
T
tink2123 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

    def forward(self, x, sPrev):
        batch_size, T, _ = x.shape  # [b x T x xDim]
        x = paddle.reshape(x, [-1, self.xDim])  # [(b x T) x xDim]
        xProj = self.xEmbed(x)  # [(b x T) x attDim]
        xProj = paddle.reshape(xProj, [batch_size, T, -1])  # [b x T x attDim]

        sPrev = sPrev.squeeze(0)
        sProj = self.sEmbed(sPrev)  # [b x attDim]
        sProj = paddle.unsqueeze(sProj, 1)  # [b x 1 x attDim]
        sProj = paddle.expand(sProj,
                              [batch_size, T, self.attDim])  # [b x T x attDim]

        sumTanh = paddle.tanh(sProj + xProj)
        sumTanh = paddle.reshape(sumTanh, [-1, self.attDim])

        vProj = self.wEmbed(sumTanh)  # [(b x T) x 1]
        vProj = paddle.reshape(vProj, [batch_size, T])
        alpha = F.softmax(
            vProj, axis=1)  # attention weights for each sample in the minibatch
        return alpha


class DecoderUnit(nn.Layer):
    def __init__(self, sDim, xDim, yDim, attDim):
        super(DecoderUnit, self).__init__()
        self.sDim = sDim
        self.xDim = xDim
        self.yDim = yDim
        self.attDim = attDim
        self.emdDim = attDim

        self.attention_unit = AttentionUnit(sDim, xDim, attDim)
        self.tgt_embedding = nn.Embedding(
            yDim + 1, self.emdDim, weight_attr=nn.initializer.Normal(
                std=0.01))  # the last is used for <BOS>
        self.gru = nn.GRUCell(input_size=xDim + self.emdDim, hidden_size=sDim)
        self.fc = nn.Linear(
            sDim,
            yDim,
            weight_attr=nn.initializer.Normal(std=0.01),
            bias_attr=nn.initializer.Constant(value=0))
        self.embed_fc = nn.Linear(300, self.sDim)

    def get_initial_state(self, embed, tile_times=1):
        assert embed.shape[1] == 300
        state = self.embed_fc(embed)  # N * sDim
        if tile_times != 1:
            state = state.unsqueeze(1)
            trans_state = paddle.transpose(state, perm=[1, 0, 2])
            state = paddle.tile(trans_state, repeat_times=[tile_times, 1, 1])
            trans_state = paddle.transpose(state, perm=[1, 0, 2])
            state = paddle.reshape(trans_state, shape=[-1, self.sDim])
        state = state.unsqueeze(0)  # 1 * N * sDim
        return state

    def forward(self, x, sPrev, yPrev):
        # x: feature sequence from the image decoder.
        batch_size, T, _ = x.shape
        alpha = self.attention_unit(x, sPrev)
        context = paddle.squeeze(paddle.matmul(alpha.unsqueeze(1), x), axis=1)
        yPrev = paddle.cast(yPrev, dtype="int64")
        yProj = self.tgt_embedding(yPrev)

        concat_context = paddle.concat([yProj, context], 1)
        concat_context = paddle.squeeze(concat_context, 1)
        sPrev = paddle.squeeze(sPrev, 0)
        output, state = self.gru(concat_context, sPrev)
        output = paddle.squeeze(output, axis=1)
        output = self.fc(output)
T
tink2123 已提交
393
        return output, state