whl.md 11.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# paddleocr package使用说明

## 快速上手

### 安装whl包

pip安装
```bash
pip install paddleocr
```

本地构建并安装
```bash
python setup.py bdist_wheel
W
WenmuZhou 已提交
15
pip install dist/paddleocr-0.0.3-py3-none-any.whl
W
WenmuZhou 已提交
16 17 18 19 20 21
```
### 1. 代码使用

* 检测+识别全流程
```python
from paddleocr import PaddleOCR, draw_ocr
W
WenmuZhou 已提交
22
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
W
WenmuZhou 已提交
43
......
W
WenmuZhou 已提交
44 45 46 47 48 49 50 51 52 53
```
结果可视化

<div align="center">
    <img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>

* 单独执行检测
```python
from paddleocr import PaddleOCR, draw_ocr
W
WenmuZhou 已提交
54
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# 显示结果
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
W
WenmuZhou 已提交
73
......
W
WenmuZhou 已提交
74 75 76 77 78 79 80 81 82 83 84
```
结果可视化


<div align="center">
    <img src="../imgs_results/whl/11_det.jpg" width="800">
</div>

* 单独执行识别
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
85
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path,det=False)
for line in result:
    print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

### 通过命令行使用

查看帮助信息
```bash
paddleocr -h
```

* 检测+识别全流程
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
W
WenmuZhou 已提交
112
......
W
WenmuZhou 已提交
113 114 115 116 117 118 119 120 121 122 123
```

* 单独执行检测
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
W
WenmuZhou 已提交
124
......
W
WenmuZhou 已提交
125 126 127 128 129 130 131 132 133 134 135 136
```

* 单独执行识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --det false
```

结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

W
WenmuZhou 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
## 自定义模型
当内置模型无法满足需求时,需要使用到自己训练的模型。
首先,参照[inference.md](./inference.md) 第一节转换将检测和识别模型转换为inference模型,然后按照如下方式使用

### 代码使用
```python
from paddleocr import PaddleOCR, draw_ocr
# 检测模型和识别模型路径下必须含有model和params文件
ocr = PaddleOCR(det_model_dir='your_det_model_dir',rec_model_dir='your_rec_model_dir')
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

### 通过命令行使用

```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir your_det_model_dir --rec_model_dir your_rec_model_dir
```

W
WenmuZhou 已提交
168 169 170 171 172 173 174 175
## 参数说明

| 字段                    | 说明                                                                                                                                                                                                                 | 默认值                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | 是否使用GPU                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | 初始化占用的GPU内存大小                                                                                                                                                                                              | 8000M                   |
| image_dir               | 通过命令行调用时执行预测的图片或文件夹路径                                                                                                                                                                           |                         |
| det_algorithm           | 使用的检测算法类型                                                                                                                                                                                                   | DB                      |
W
WenmuZhou 已提交
176
| det_model_dir          |  检测模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/det`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 |   None        |
W
WenmuZhou 已提交
177 178 179 180 181 182 183 184
| det_max_side_len        | 检测算法前向时图片长边的最大尺寸,当长边超出这个值时会将长边resize到这个大小,短边等比例缩放                                                                                                                         | 960                     |
| det_db_thresh           | DB模型输出预测图的二值化阈值                                                                                                                                                                                         | 0.3                     |
| det_db_box_thresh       | DB模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                           | 0.5                     |
| det_db_unclip_ratio     | DB模型输出框扩大的比例                                                                                                                                                                                               | 2                       |
| det_east_score_thresh   | EAST模型输出预测图的二值化阈值                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | EAST模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | EAST模型输出框NMS的阈值                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | 使用的识别算法类型                                                                                                                                                                                                   | CRNN                    |
W
WenmuZhou 已提交
185
| rec_model_dir          | 识别模型所在文件夹。传承那方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/rec`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 | None |
W
WenmuZhou 已提交
186 187 188
| rec_image_shape         | 识别算法的输入图片尺寸                                                                                                                                                                                             | "3,32,320"              |
| rec_char_type           | 识别算法的字符类型,中文(ch)或英文(en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | 进行识别时,同时前向的图片数                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
189 190
| max_text_length         | 识别算法能识别的最大文字长度                                                                                                                                                                                         | 25                      |
| rec_char_dict_path      | 识别模型字典路径,当rec_model_dir使用方式2传参时需要修改为自己的字典路径                                                                                                                                                | ./ppocr/utils/ppocr_keys_v1.txt                        |
W
WenmuZhou 已提交
191 192 193 194
| use_space_char          | 是否识别空格                                                                                                                                                                                                         | TRUE                    |
| enable_mkldnn           | 是否启用mkldnn                                                                                                                                                                                                       | FALSE                   |
| det                     | 前向时使用启动检测                                                                                                                                                                                                   | TRUE                    |
| rec                     | 前向时是否启动识别                                                                                                                                                                                                   | TRUE                    |