README.md 15.4 KB
Newer Older
W
WenmuZhou 已提交
1 2
English | [简体中文](README_ch.md)

qq_25193841's avatar
qq_25193841 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
<p align="center">
 <img src="./doc/PaddleOCR_log.png" align="middle" width = "600"/>
<p align="center">


------------------------------------------------------------------------------------------

<p align="left">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleOCR?color=9ea"></a>
    <a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>

W
WenmuZhou 已提交
21
## Introduction
qq_25193841's avatar
qq_25193841 已提交
22

L
LDOUBLEV 已提交
23
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
W
WenmuZhou 已提交
24

G
grasswolfs 已提交
25

W
WenmuZhou 已提交
26
**Recent updates**
qq_25193841's avatar
qq_25193841 已提交
27

D
DanielYang 已提交
28
- PaddleOCR R&D team would like to share the key points of PP-OCRv2, at 20:15 pm on September 8th, [Live Address](https://live.bilibili.com/21689802).
D
DanielYang 已提交
29
- 2021.9.7 release PaddleOCR v2.3, [PP-OCRv2](#PP-OCRv2) is proposed. The inference speed of PP-OCRv2 is 220% higher than that of PP-OCR server in CPU device. The F-score of PP-OCRv2 is 7% higher than that of PP-OCR mobile. ([arxiv paper](https://arxiv.org/abs/2109.03144))
qq_25193841's avatar
qq_25193841 已提交
30 31 32
- 2021.8.3 released PaddleOCR v2.2, add a new structured documents analysis toolkit, i.e., [PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README.md), support layout analysis and table recognition (One-key to export chart images to Excel files).
- 2021.4.8 release end-to-end text recognition algorithm [PGNet](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf) which is published in AAAI 2021. Find tutorial [here](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/pgnet_en.md);release multi language recognition [models](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md), support more than 80 languages recognition; especically, the performance of [English recognition model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/models_list_en.md#English) is Optimized.

W
WenmuZhou 已提交
33 34 35
- [more](./doc/doc_en/update_en.md)

## Features
G
grasswolfs 已提交
36 37 38 39
- PP-OCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight PP-OCRv2 series models: detection (3.1M) + direction classifier (1.4M) + recognition 8.5M) = 13.0M
    - Ultra lightweight PP-OCR mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General PP-OCR server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
G
grasswolfs 已提交
40 41
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    - Support multi-language recognition: Korean, Japanese, German, French
G
grasswolfs 已提交
42
- Rich toolkits related to the OCR areas
G
grasswolfs 已提交
43 44
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
W
WenmuZhou 已提交
45 46 47 48 49
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
50

W
WenmuZhou 已提交
51
<div align="center">
L
LDOUBLEV 已提交
52
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
T
tink2123 已提交
53 54
    <img src="doc/imgs_results/multi_lang/img_01.jpg" width="800">
    <img src="doc/imgs_results/multi_lang/img_02.jpg" width="800">
W
WenmuZhou 已提交
55 56 57
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
D
dyning 已提交
58

L
LDOUBLEV 已提交
59 60 61 62 63
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
D
Daniel Yang 已提交
64
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG"  width = "200" height = "200" />
L
LDOUBLEV 已提交
65 66 67
</div>


W
WenmuZhou 已提交
68
## Quick Experience
D
dyning 已提交
69

W
WenmuZhou 已提交
70
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
D
dyning 已提交
71

W
WenmuZhou 已提交
72
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
T
tink2123 已提交
73

W
WenmuZhou 已提交
74
 Also, you can scan the QR code below to install the App (**Android support only**)
L
LDOUBLEV 已提交
75

G
grasswolfs 已提交
76
<div align="center">
W
WenmuZhou 已提交
77
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
G
grasswolfs 已提交
78
</div>
D
dyning 已提交
79

W
WenmuZhou 已提交
80 81 82 83
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

L
LDOUBLEV 已提交
84

G
grasswolfs 已提交
85
## PP-OCR series model list(Update on September 8th)
W
WenmuZhou 已提交
86 87 88

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
L
LDOUBLEV 已提交
89
| Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) |  ch_PP-OCRv2_xx |Mobile&Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
G
grasswolfs 已提交
90
| Chinese and English ultra-lightweight PP-OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
L
LDOUBLEV 已提交
91
| Chinese and English general PP-OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  
L
LDOUBLEV 已提交
92

W
WenmuZhou 已提交
93

G
grasswolfs 已提交
94
For more model downloads (including multiple languages), please refer to [PP-OCR series model downloads](./doc/doc_en/models_list_en.md).
W
WenmuZhou 已提交
95

L
LDOUBLEV 已提交
96
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
W
WenmuZhou 已提交
97 98

## Tutorials
qq_25193841's avatar
qq_25193841 已提交
99
- [Environment Preparation](./doc/doc_en/environment_en.md)
W
WenmuZhou 已提交
100
- [Quick Start](./doc/doc_en/quickstart_en.md)
qq_25193841's avatar
qq_25193841 已提交
101
- [PaddleOCR Overview and Project Clone](./doc/doc_en/paddleOCR_overview_en.md)
qq_25193841's avatar
qq_25193841 已提交
102
- PP-OCR Industry Landing: from Training to Deployment
qq_25193841's avatar
qq_25193841 已提交
103
    - [PP-OCR Model Zoo](./doc/doc_en/models_en.md)
qq_25193841's avatar
qq_25193841 已提交
104
        - [PP-OCR Model Download](./doc/doc_en/models_list_en.md)
105
        - [Python Inference for PP-OCR Model Library](./doc/doc_en/inference_ppocr_en.md)
qq_25193841's avatar
qq_25193841 已提交
106
    - [PP-OCR Training](./doc/doc_en/training_en.md)
qq_25193841's avatar
qq_25193841 已提交
107 108 109
        - [Text Detection](./doc/doc_en/detection_en.md)
        - [Text Recognition](./doc/doc_en/recognition_en.md)
        - [Direction Classification](./doc/doc_en/angle_class_en.md)
qq_25193841's avatar
qq_25193841 已提交
110
        - [Yml Configuration](./doc/doc_en/config_en.md)
qq_25193841's avatar
qq_25193841 已提交
111 112 113 114 115 116 117 118 119 120 121
    - Inference and Deployment
        - [C++ Inference](./deploy/cpp_infer/readme_en.md)
        - [Serving](./deploy/pdserving/README.md)
        - [Mobile](./deploy/lite/readme_en.md)
        - [Benchmark](./doc/doc_en/benchmark_en.md)  
- [PP-Structure: Information Extraction](./ppstructure/README.md)
    - [Layout Parser](./ppstructure/layout/README.md)
    - [Table Recognition](./ppstructure/table/README.md)
- Academic Circles
    - [Two-stage Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [PGNet Algorithm](./doc/doc_en/algorithm_overview_en.md)
122
    - [Python Inference](./doc/doc_en/inference_en.md)
L
LDOUBLEV 已提交
123
- Data Annotation and Synthesis
G
grasswolfs 已提交
124
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
D
dyning 已提交
125
    - [Data Synthesis Tool: Style-Text](./StyleText/README.md)
G
grasswolfs 已提交
126 127
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
W
WenmuZhou 已提交
128 129 130 131 132
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
L
LDOUBLEV 已提交
133
- [New language requests](#language_requests)
W
WenmuZhou 已提交
134 135 136 137 138 139
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

G
grasswolfs 已提交
140
<a name="PP-OCRv2"></a>
W
WenmuZhou 已提交
141

G
grasswolfs 已提交
142 143 144 145
## PP-OCRv2 Pipeline
<div align="center">
    <img src="./doc/ppocrv2_framework.jpg" width="800">
</div>
L
LDOUBLEV 已提交
146

G
grasswolfs 已提交
147
[1] PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module (as shown in the green box above). The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941).
L
LDOUBLEV 已提交
148

D
DanielYang 已提交
149
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the [technical report](https://arxiv.org/abs/2109.03144) of PP-OCRv2.
D
dyning 已提交
150 151


D
dyning 已提交
152

T
tink2123 已提交
153

W
WenmuZhou 已提交
154 155
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
D
dyning 已提交
156
<div align="center">
L
LDOUBLEV 已提交
157
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
L
LDOUBLEV 已提交
158 159
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
L
LDOUBLEV 已提交
160
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
D
dyning 已提交
161
</div>
T
tink2123 已提交
162

W
WenmuZhou 已提交
163
- English OCR model
D
dyning 已提交
164
<div align="center">
L
LDOUBLEV 已提交
165
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
D
dyning 已提交
166
</div>
167

W
WenmuZhou 已提交
168
- Multilingual OCR model
D
dyning 已提交
169
<div align="center">
L
LDOUBLEV 已提交
170
    <img src="./doc/imgs_results/french_0.jpg" width="800">
L
LDOUBLEV 已提交
171
    <img src="./doc/imgs_results/korean.jpg" width="800">
D
dyning 已提交
172
</div>
T
tink2123 已提交
173

D
dyning 已提交
174

L
LDOUBLEV 已提交
175 176 177 178 179
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

G
grasswolfs 已提交
180
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
L
LDOUBLEV 已提交
181 182
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

G
grasswolfs 已提交
183
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
L
LDOUBLEV 已提交
184 185 186 187 188 189 190 191
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

M
MissPenguin 已提交
192

W
WenmuZhou 已提交
193 194 195 196 197 198 199 200 201
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
L
littletomatodonkey 已提交
202
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitignore and discard set PYTHONPATH manually.
W
WenmuZhou 已提交
203 204 205 206 207
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
L
LDOUBLEV 已提交
208 209 210 211
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。