utility.py 23.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

27
logger = get_logger()
L
LDOUBLEV 已提交
28 29


30 31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
32 33


W
WenmuZhou 已提交
34 35
def init_args():
    parser = argparse.ArgumentParser()
36
    # params for prediction engine
W
WenmuZhou 已提交
37 38 39
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--precision", type=str, default="fp32")
W
WenmuZhou 已提交
41 42
    parser.add_argument("--gpu_mem", type=int, default=500)

W
WenmuZhou 已提交
43
    # params for text detector
W
WenmuZhou 已提交
44 45 46 47 48 49
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')

W
WenmuZhou 已提交
50
    # DB parmas
W
WenmuZhou 已提交
51 52 53 54 55 56
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
    parser.add_argument("--max_batch_size", type=int, default=10)
    parser.add_argument("--use_dilation", type=bool, default=False)
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
57
    # EAST parmas
W
WenmuZhou 已提交
58 59 60 61
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
62
    # SAST parmas
W
WenmuZhou 已提交
63 64 65 66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
    parser.add_argument("--det_sast_polygon", type=bool, default=False)

W
WenmuZhou 已提交
67
    # params for text recognizer
W
WenmuZhou 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=6)
    parser.add_argument("--max_text_length", type=int, default=25)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
    parser.add_argument("--drop_score", type=float, default=0.5)

J
Jethong 已提交
83
    # params for e2e
W
WenmuZhou 已提交
84 85 86 87 88
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

J
Jethong 已提交
89
    # PGNet parmas
W
WenmuZhou 已提交
90 91 92 93 94 95 96
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')

W
WenmuZhou 已提交
97
    # params for text classifier
W
WenmuZhou 已提交
98 99 100 101 102 103 104 105 106 107
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=6)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--cpu_threads", type=int, default=10)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
108
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
109 110 111 112

    parser.add_argument("--use_mp", type=str2bool, default=False)
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
D
Double_V 已提交
113
    
L
LDOUBLEV 已提交
114 115
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
116

W
WenmuZhou 已提交
117
    parser.add_argument("--show_log", type=str2bool, default=True)
D
Double_V 已提交
118

W
WenmuZhou 已提交
119
    return parser
W
WenmuZhou 已提交
120

121

122
def parse_args():
W
WenmuZhou 已提交
123
    parser = init_args()
L
LDOUBLEV 已提交
124 125 126
    return parser.parse_args()


L
LDOUBLEV 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
class Times(object):
    def __init__(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += self.et - self.st
        else:
            self.time = self.et - self.st

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
        self.total_time = Times()
        self.preprocess_time = Times()
        self.inference_time = Times()
        self.postprocess_time = Times()
        self.img_num = 0

    def info(self, average=False):
        logger.info("----------------------- Perf info -----------------------")
        logger.info("total_time: {}, img_num: {}".format(self.total_time.value(
        ), self.img_num))
        preprocess_time = round(self.preprocess_time.value() / self.img_num,
                                4) if average else self.preprocess_time.value()
        postprocess_time = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        inference_time = round(self.inference_time.value() / self.img_num,
                               4) if average else self.inference_time.value()

        average_latency = self.total_time.value() / self.img_num
        logger.info("average_latency(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, 1 / average_latency))
        logger.info(
            "preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
        dic['preprocess_time'] = round(
            self.preprocess_time.value() / self.img_num,
            4) if average else self.preprocess_time.value()
        dic['postprocess_time'] = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        dic['inference_time'] = round(
            self.inference_time.value() / self.img_num,
            4) if average else self.inference_time.value()
        dic['img_num'] = self.img_num
        dic['total_time'] = round(self.total_time.value(), 4)
        return dic


W
WenmuZhou 已提交
197 198 199 200 201
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
202
    elif mode == 'rec':
W
WenmuZhou 已提交
203
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
204 205
    elif mode == 'structure':
        model_dir = args.structure_model_dir
J
Jethong 已提交
206 207
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
208 209 210 211

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
212 213
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
214 215 216 217 218 219 220
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

W
WenmuZhou 已提交
221
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
222

L
LDOUBLEV 已提交
223 224 225 226 227 228 229 230 231 232
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
233 234
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
235 236
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
237 238
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
W
WenmuZhou 已提交
239
                min_subgraph_size=3)  # skip the minmum trt subgraph
L
LDOUBLEV 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
310 311 312 313
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
314 315 316
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
317 318
    else:
        config.disable_gpu()
319 320 321
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
322 323
            # default cpu threads as 10
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
324 325 326 327 328
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
329 330
    # enable memory optim
    config.enable_memory_optim()
W
WenmuZhou 已提交
331 332
    config.disable_glog_info()

W
WenmuZhou 已提交
333 334
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
335 336
    config.switch_ir_optim(True)
    if mode == 'structure':
W
WenmuZhou 已提交
337
        config.switch_ir_optim(False)
W
WenmuZhou 已提交
338 339
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
340 341
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
342
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
343 344 345
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
346
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
347
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
348
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
349 350


J
Jethong 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
367
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
368 369 370 371
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
372
    return src_im
L
LDOUBLEV 已提交
373 374


L
LDOUBLEV 已提交
375 376
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
377
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
378 379 380 381 382
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
383 384
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
385 386


W
WenmuZhou 已提交
387 388 389 390 391
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
392
             font_path="./doc/fonts/simfang.ttf"):
393 394 395
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
396
        image(Image|array): RGB image
397 398 399 400
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
401
        font_path: the path of font which is used to draw text
402 403 404
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
405 406
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
407 408 409 410
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
411
            continue
W
WenmuZhou 已提交
412
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
413
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
414
    if txts is not None:
L
LDOUBLEV 已提交
415
        img = np.array(resize_img(image, input_size=600))
416
        txt_img = text_visual(
W
WenmuZhou 已提交
417 418 419 420 421 422
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
423
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
424 425
        return img
    return image
426 427


W
WenmuZhou 已提交
428 429 430 431 432 433
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
434 435 436
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
437 438

    import random
L
LDOUBLEV 已提交
439

440 441 442
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
443 444 445
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
446 447
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
448
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
449 450 451 452 453 454 455 456 457 458
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
459 460
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
461
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
462 463 464
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
465 466
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
467 468 469
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
470
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
471 472
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
473 474 475 476
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
477 478 479
    return np.array(img_show)


480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
504 505 506 507 508 509
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
510 511 512 513 514 515 516
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
517
        font_path: the path of font which is used to draw text
518 519 520 521 522 523 524 525 526
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
527 528
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
529
        return blank_img, draw_txt
L
LDOUBLEV 已提交
530

531 532 533 534
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
535
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
536 537 538

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
539
    count, index = 1, 0
540 541
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
542
        if scores[idx] < threshold or math.isnan(scores[idx]):
543 544 545 546 547 548 549 550 551 552 553
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
554
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
555 556 557 558 559
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
560
            count += 1
561 562 563
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
564
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
565
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
566
        # whether add new blank img or not
L
LDOUBLEV 已提交
567
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
568 569 570
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
571
        count += 1
572 573 574 575 576 577
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
578 579


D
dyning 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
def get_current_memory_mb(gpu_id=None):
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    if gpu_id is not None:
        GPUs = GPUtil.getGPUs()
        gpu_load = GPUs[gpu_id].load
        gpu_percent = gpu_load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)


L
LDOUBLEV 已提交
624
if __name__ == '__main__':
L
LDOUBLEV 已提交
625
    pass