README_en.md 4.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## Introduction

Generally, a more complex model would achive better performance in the task, but it also leads to some redundancy in the model. Model Pruning is a technique that reduces this redundancy by removing the sub-models in the neural network model, so as to reduce model calculation complexity and improve model inference performance.

This example uses PaddleSlim provided[APIs of Pruning](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/) to compress the OCR model.
[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), an open source library which integrates model pruning, quantization (including quantization training and offline quantization), distillation, neural network architecture search, and many other commonly used and leading model compression technique in the industry.

It is recommended that you could understand following pages before reading this example:
1. [PaddleOCR training methods](../../../doc/doc_ch/quickstart.md)
2. [The demo of prune](https://github.com/PaddlePaddle/PaddleSlim/blob/release%2F2.0.0/docs/zh_cn/tutorials/pruning/dygraph/filter_pruning.md)

## Quick start

Five steps for OCR model prune:
1. Install PaddleSlim
2. Prepare the trained model
3. Sensitivity analysis and tailoring training
4. Export model, predict deployment

### 1. Install PaddleSlim

```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git
git checkout develop
L
LDOUBLEV 已提交
26
cd PaddleSlim
L
LDOUBLEV 已提交
27 28 29 30 31 32
python3 setup.py install
```


### 2. Download Pretrain Model
Model prune needs to load pre-trained models.
L
LDOUBLEV 已提交
33
PaddleOCR also provides a series of [models](../../../doc/doc_en/models_list_en.md). Developers can choose their own models or use their own models according to their needs.
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


### 3. Pruning sensitivity analysis

  After the pre-training model is loaded, sensitivity analysis is performed on each network layer of the model to understand the redundancy of each network layer, and save a sensitivity file which named: sen.pickle.  After that, user could load the sensitivity file via the [methods provided by PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L221) and determining the pruning ratio of each network layer automatically. For specific details of sensitivity analysis, see:[Sensitivity analysis](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/tutorials/image_classification_sensitivity_analysis_tutorial.md)
  The data format of sensitivity file:
      sen.pickle(Dict){
              'layer_weight_name_0': sens_of_each_ratio(Dict){'pruning_ratio_0': acc_loss, 'pruning_ratio_1': acc_loss}
              'layer_weight_name_1': sens_of_each_ratio(Dict){'pruning_ratio_0': acc_loss, 'pruning_ratio_1': acc_loss}
          }

      example:
          {
              'conv10_expand_weights': {0.1: 0.006509952684312718, 0.2: 0.01827734339798862, 0.3: 0.014528405644659832, 0.6: 0.06536008804270439, 0.8: 0.11798612250664964, 0.7: 0.12391408417493704, 0.4: 0.030615754498018757, 0.5: 0.047105205602406594}
              'conv10_linear_weights': {0.1: 0.05113190831455035, 0.2: 0.07705573833558801, 0.3: 0.12096721757739311, 0.6: 0.5135061352930738, 0.8: 0.7908166677143281, 0.7: 0.7272187676899062, 0.4: 0.1819252083008504, 0.5: 0.3728054727792405}
          }
  The function would return a dict after loading the sensitivity file. The keys of the dict are name of parameters in each layer. And the value of key is the information about pruning sensitivity of correspoding layer. In example, pruning 10% filter of the layer corresponding to conv10_expand_weights would lead to 0.65% degradation of model performance. The details could be seen at: [Sensitivity analysis](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/algo/algo.md#2-%E5%8D%B7%E7%A7%AF%E6%A0%B8%E5%89%AA%E8%A3%81%E5%8E%9F%E7%90%86)


Enter the PaddleOCR root directory,perform sensitivity analysis on the model with the following command:

```bash

L
LDOUBLEV 已提交
57
python3.7 deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model="your trained model"
L
LDOUBLEV 已提交
58 59 60 61 62 63 64 65

```


### 5.  Export inference model and deploy it

We can export the pruned model as inference_model for deployment:
```bash
L
LDOUBLEV 已提交
66
python deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml  -o Global.pretrained_model=./output/det_db/best_accuracy Global.save_inference_dir=inference_model
L
LDOUBLEV 已提交
67 68 69 70 71
```

Reference for prediction and deployment of inference model:
1. [inference model python prediction](../../../doc/doc_en/inference_en.md)
2. [inference model C++ prediction](../../cpp_infer/readme_en.md)