rec_resnet_31.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from: 
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
"""

A
andyjpaddle 已提交
20 21 22 23 24 25 26 27 28 29 30 31
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np

__all__ = ["ResNet31"]

xuyang2233's avatar
xuyang2233 已提交
32
def conv3x3(in_channel, out_channel, stride=1, conv_weight_attr=None):
A
andyjpaddle 已提交
33 34 35 36 37 38
    return nn.Conv2D(
        in_channel,
        out_channel,
        kernel_size=3,
        stride=stride,
        padding=1,
xuyang2233's avatar
xuyang2233 已提交
39
        weight_attr=conv_weight_attr,
40
        bias_attr=False)
A
andyjpaddle 已提交
41 42 43 44


class BasicBlock(nn.Layer):
    expansion = 1
45

xuyang2233's avatar
xuyang2233 已提交
46
    def __init__(self, in_channels, channels, stride=1, downsample=False, conv_weight_attr=None, bn_weight_attr=None):
A
andyjpaddle 已提交
47
        super().__init__()
xuyang2233's avatar
xuyang2233 已提交
48 49
        self.conv1 = conv3x3(in_channels, channels, stride, 
            conv_weight_attr=conv_weight_attr)
xuyang2233's avatar
xuyang2233 已提交
50
        self.bn1 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
51
        self.relu = nn.ReLU()
xuyang2233's avatar
xuyang2233 已提交
52 53
        self.conv2 = conv3x3(channels, channels,
            conv_weight_attr=conv_weight_attr)
xuyang2233's avatar
xuyang2233 已提交
54
        self.bn2 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
55 56 57
        self.downsample = downsample
        if downsample:
            self.downsample = nn.Sequential(
58 59 60 61 62
                nn.Conv2D(
                    in_channels,
                    channels * self.expansion,
                    1,
                    stride,
xuyang2233's avatar
xuyang2233 已提交
63
                    weight_attr=conv_weight_attr,
64
                    bias_attr=False),
xuyang2233's avatar
xuyang2233 已提交
65
                nn.BatchNorm2D(channels * self.expansion, weight_attr=bn_weight_attr))
A
andyjpaddle 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        else:
            self.downsample = nn.Sequential()
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

86
        return out
A
andyjpaddle 已提交
87 88 89 90 91 92 93 94 95 96


class ResNet31(nn.Layer):
    '''
    Args:
        in_channels (int): Number of channels of input image tensor.
        layers (list[int]): List of BasicBlock number for each stage.
        channels (list[int]): List of out_channels of Conv2d layer.
        out_indices (None | Sequence[int]): Indices of output stages.
        last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
xuyang2233's avatar
xuyang2233 已提交
97
        init_type (None | str): the config to control the initialization.
A
andyjpaddle 已提交
98
    '''
99 100 101 102 103 104

    def __init__(self,
                 in_channels=3,
                 layers=[1, 2, 5, 3],
                 channels=[64, 128, 256, 256, 512, 512, 512],
                 out_indices=None,
xuyang2233's avatar
xuyang2233 已提交
105 106
                 last_stage_pool=False,
                 init_type=None):
A
andyjpaddle 已提交
107 108 109 110 111 112 113
        super(ResNet31, self).__init__()
        assert isinstance(in_channels, int)
        assert isinstance(last_stage_pool, bool)

        self.out_indices = out_indices
        self.last_stage_pool = last_stage_pool

xuyang2233's avatar
xuyang2233 已提交
114 115 116 117 118 119 120 121 122 123
        conv_weight_attr = None
        bn_weight_attr = None
        
        if init_type is not None:
            support_dict = ['KaimingNormal']
            assert init_type in support_dict, Exception(
            "resnet31 only support {}".format(support_dict))
            conv_weight_attr = nn.initializer.KaimingNormal()
            bn_weight_attr = ParamAttr(initializer=nn.initializer.Uniform(), learning_rate=1)

A
andyjpaddle 已提交
124
        # conv 1 (Conv Conv)
125
        self.conv1_1 = nn.Conv2D(
xuyang2233's avatar
xuyang2233 已提交
126 127
            in_channels, channels[0], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
        self.bn1_1 = nn.BatchNorm2D(channels[0], weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
128 129
        self.relu1_1 = nn.ReLU()

130
        self.conv1_2 = nn.Conv2D(
xuyang2233's avatar
xuyang2233 已提交
131 132
            channels[0], channels[1], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
        self.bn1_2 = nn.BatchNorm2D(channels[1], weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
133 134 135
        self.relu1_2 = nn.ReLU()

        # conv 2 (Max-pooling, Residual block, Conv)
136 137
        self.pool2 = nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
xuyang2233's avatar
xuyang2233 已提交
138 139
        self.block2 = self._make_layer(channels[1], channels[2], layers[0], 
            conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
140
        self.conv2 = nn.Conv2D(
xuyang2233's avatar
xuyang2233 已提交
141 142
            channels[2], channels[2], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
        self.bn2 = nn.BatchNorm2D(channels[2], weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
143 144 145
        self.relu2 = nn.ReLU()

        # conv 3 (Max-pooling, Residual block, Conv)
146 147
        self.pool3 = nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
xuyang2233's avatar
xuyang2233 已提交
148 149
        self.block3 = self._make_layer(channels[2], channels[3], layers[1], 
            conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
150
        self.conv3 = nn.Conv2D(
xuyang2233's avatar
xuyang2233 已提交
151 152
            channels[3], channels[3], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
        self.bn3 = nn.BatchNorm2D(channels[3], weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
153 154 155
        self.relu3 = nn.ReLU()

        # conv 4 (Max-pooling, Residual block, Conv)
156 157
        self.pool4 = nn.MaxPool2D(
            kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
xuyang2233's avatar
xuyang2233 已提交
158 159
        self.block4 = self._make_layer(channels[3], channels[4], layers[2], 
            conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
160
        self.conv4 = nn.Conv2D(
xuyang2233's avatar
xuyang2233 已提交
161 162
            channels[4], channels[4], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
        self.bn4 = nn.BatchNorm2D(channels[4], weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
163 164 165 166 167
        self.relu4 = nn.ReLU()

        # conv 5 ((Max-pooling), Residual block, Conv)
        self.pool5 = None
        if self.last_stage_pool:
168 169
            self.pool5 = nn.MaxPool2D(
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
xuyang2233's avatar
xuyang2233 已提交
170 171
        self.block5 = self._make_layer(channels[4], channels[5], layers[3], 
            conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
172
        self.conv5 = nn.Conv2D(
xuyang2233's avatar
xuyang2233 已提交
173 174
            channels[5], channels[5], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
        self.bn5 = nn.BatchNorm2D(channels[5], weight_attr=bn_weight_attr)
A
andyjpaddle 已提交
175 176 177
        self.relu5 = nn.ReLU()

        self.out_channels = channels[-1]
178

xuyang2233's avatar
xuyang2233 已提交
179
    def _make_layer(self, input_channels, output_channels, blocks, conv_weight_attr=None, bn_weight_attr=None):
A
andyjpaddle 已提交
180 181 182 183 184 185
        layers = []
        for _ in range(blocks):
            downsample = None
            if input_channels != output_channels:
                downsample = nn.Sequential(
                    nn.Conv2D(
186 187 188 189
                        input_channels,
                        output_channels,
                        kernel_size=1,
                        stride=1,
xuyang2233's avatar
xuyang2233 已提交
190
                        weight_attr=conv_weight_attr,
A
andyjpaddle 已提交
191
                        bias_attr=False),
xuyang2233's avatar
xuyang2233 已提交
192
                    nn.BatchNorm2D(output_channels, weight_attr=bn_weight_attr))
193 194 195

            layers.append(
                BasicBlock(
xuyang2233's avatar
xuyang2233 已提交
196 197
                    input_channels, output_channels, downsample=downsample, 
                    conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr))
A
andyjpaddle 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            input_channels = output_channels
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1_1(x)
        x = self.bn1_1(x)
        x = self.relu1_1(x)

        x = self.conv1_2(x)
        x = self.bn1_2(x)
        x = self.relu1_2(x)

        outs = []
        for i in range(4):
            layer_index = i + 2
            pool_layer = getattr(self, f'pool{layer_index}')
            block_layer = getattr(self, f'block{layer_index}')
            conv_layer = getattr(self, f'conv{layer_index}')
            bn_layer = getattr(self, f'bn{layer_index}')
            relu_layer = getattr(self, f'relu{layer_index}')

            if pool_layer is not None:
                x = pool_layer(x)
            x = block_layer(x)
            x = conv_layer(x)
            x = bn_layer(x)
224
            x = relu_layer(x)
A
andyjpaddle 已提交
225 226

            outs.append(x)
227

A
andyjpaddle 已提交
228 229
        if self.out_indices is not None:
            return tuple([outs[i] for i in self.out_indices])
230

A
andyjpaddle 已提交
231
        return x