db_postprocess.py 6.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.fluid as fluid

import numpy as np
import string
import cv2
from shapely.geometry import Polygon
import pyclipper
L
LDOUBLEV 已提交
27
from copy import deepcopy
L
LDOUBLEV 已提交
28 29 30 31 32 33 34 35 36 37 38


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

    def __init__(self, params):
        self.thresh = params['thresh']
        self.box_thresh = params['box_thresh']
        self.max_candidates = params['max_candidates']
L
LDOUBLEV 已提交
39
        self.unclip_ratio = params['unclip_ratio']
L
LDOUBLEV 已提交
40
        self.min_size = 3
L
LDOUBLEV 已提交
41
        self.dilation_kernel = np.array([[1, 1], [1, 1]])
L
LDOUBLEV 已提交
42

L
LDOUBLEV 已提交
43 44 45 46 47 48 49 50 51
    def boxes_from_bitmap(self, pred, mask):
        """
        Get boxes from the binarized image predicted by DB.
        :param pred: the binarized image predicted by DB.
        :param mask: new 'pred' after threshold filtering.
        :return: (boxes, the score of each boxes)
        """
        dest_height, dest_width = pred.shape[-2:]
        bitmap = deepcopy(mask)
L
LDOUBLEV 已提交
52 53
        height, width = bitmap.shape

L
LDOUBLEV 已提交
54 55
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
T
tink2123 已提交
56 57 58 59
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
L
LDOUBLEV 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

        num_contours = min(len(contours), self.max_candidates)
        boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
        scores = np.zeros((num_contours, ), dtype=np.float32)

        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)
            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes[index, :, :] = box.astype(np.int16)
            scores[index] = score
        return boxes, scores

L
LDOUBLEV 已提交
92
    def unclip(self, box):
L
LDOUBLEV 已提交
93 94 95 96 97
        """
        Shrink or expand the boxaccording to 'unclip_ratio'
        :param box: The predicted box.
        :return: uncliped box
        """
L
LDOUBLEV 已提交
98
        unclip_ratio = self.unclip_ratio
L
LDOUBLEV 已提交
99 100 101 102 103 104 105 106
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
L
LDOUBLEV 已提交
107 108 109 110 111
        """
        Get boxes from the contour or box.
        :param contour: The predicted contour.
        :return: The predicted box.
        """
L
LDOUBLEV 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
L
LDOUBLEV 已提交
135 136 137 138 139 140
        """
        Calculate the score of box.
        :param bitmap: The binarized image predicted by DB.
        :param _box: The predicted box
        :return: score
        """
L
LDOUBLEV 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

    def __call__(self, outs_dict, ratio_list):
        pred = outs_dict['maps']
156

L
LDOUBLEV 已提交
157 158 159 160
        pred = pred[:, 0, :, :]
        segmentation = pred > self.thresh
        boxes_batch = []
        for batch_index in range(pred.shape[0]):
L
LDOUBLEV 已提交
161

L
LDOUBLEV 已提交
162 163 164 165 166
            mask = cv2.dilate(
                np.array(segmentation[batch_index]).astype(np.uint8),
                self.dilation_kernel)
            tmp_boxes, tmp_scores = self.boxes_from_bitmap(pred[batch_index],
                                                           mask)
L
LDOUBLEV 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180

            boxes = []
            for k in range(len(tmp_boxes)):
                if tmp_scores[k] > self.box_thresh:
                    boxes.append(tmp_boxes[k])
            if len(boxes) > 0:
                boxes = np.array(boxes)

                ratio_h, ratio_w = ratio_list[batch_index]
                boxes[:, :, 0] = boxes[:, :, 0] / ratio_w
                boxes[:, :, 1] = boxes[:, :, 1] / ratio_h

            boxes_batch.append(boxes)
        return boxes_batch